Fluid Mechanics of Environmental Interfaces, Second Edition


Book Description

Environmental Fluid Mechanics (EFM) studies the motion of air and water at several different scales, the fate and transport of species carried along by these fluids, and the interactions among those flows and geological, biological, and engineered systems. EFM emerged some decades ago as a response to the need for tools to study problems of flow and transport in rivers, estuaries, lakes, groundwater and the atmosphere; it is a topic of increasing importance for decision makers, engineers, and researchers alike. The second edition of the successful textbook "Fluid Mechanics of Environmental Interfaces" is still aimed at providing a comprehensive overview of fluid mechanical processes occurring at the different interfaces existing in the realm of EFM, such as the air-water interface, the air-land interface, the water-sediment interface, the surface water-groundwater interface, the water-vegetation interface, and the water-biological systems interface. Across any of these interfaces mass, momentum, and heat are exchanged through different fluid mechanical processes over various spatial and temporal scales. In this second edition, the unique feature of this book, considering all the topics from the point of view of the concept of environmental interface, was maintained while the chapters were updated and five new chapters have been added to significantly enlarge the coverage of the subject area. The book starts with a chapter introducing the concept of EFM and its scope, scales, processes and systems. Then, the book is structured in three parts with fifteen chapters. Part one, which is composed of four chapters, covers the processes occurring at the interfaces between the atmosphere and the surface of the land and the seas, including the transport of dust and the dispersion of passive substances within the atmosphere. Part two deals in five chapters with the fluid mechanics at the air-water interface at small scales and sediment-water interface, including the advective diffusion of air bubbles, the hyporheic exchange and the tidal bores. Finally, part three discusses in six chapters the processes at the interfaces between fluids and biotic systems, such as transport processes in the soil-vegetation-lower atmosphere system, turbulence and wind above and within the forest canopy, flow and mass transport in vegetated open channels, transport processes to and from benthic plants and animals and coupling between interacting environmental interfaces. Each chapter has an educational part, which is structured in four sections: a synopsis of the chapter, a list of keywords that the reader should have encountered in the chapter, a list of questions and a list of unsolved problems related to the topics covered by the chapter. The book will be of interest to graduate students and researchers in environmental sciences, civil engineering and environmental engineering, (geo)physics, atmospheric science, meteorology, limnology, oceanography, and applied mathematics.




Advances in Fluid and Thermal Engineering


Book Description

This volume comprises the select proceedings of the 3rd Biennial International Conference on Future Learning Aspects of Mechanical Engineering (FLAME-2022). It aims to provide a comprehensive and broad-spectrum picture of state-of-the-art research and development in thermal and fluid engineering. Various topics covered include flow analysis, thermal systems, flow instability, renewable energy, hydel and wind power systems, heat transfer augmentation, biomimetic/ bioinspired engineering, heat pipes, heat pumps, multiphase flow/ heat transfer, energy conversion, thermal hydraulics of nuclear systems, refrigeration, and HVAC systems, computational fluid dynamics, fluid-structure interaction, etc. This volume will prove a valuable resource for those in academia and industry.




Applied Aerodynamics


Book Description

Aerodynamics, from a modern point of view, is a branch of physics that study physical laws and their applications, regarding the displacement of a body into a fluid, such concept could be applied to any body moving in a fluid at rest or any fluid moving around a body at rest. This Book covers a small part of the numerous cases of stationary and non stationary aerodynamics; wave generation and propagation; wind energy; flow control techniques and, also, sports aerodynamics. It's not an undergraduate text but is thought to be useful for those teachers and/or researchers which work in the several branches of applied aerodynamics and/or applied fluid dynamics, from experiments procedures to computational methods.




Trends in Mechanical and Biomedical Design


Book Description

This book comprises select papers presented at the International Conference on Mechanical Engineering Design (ICMechD) 2019. The volume focuses on the recent trends in design research and their applications across the mechanical and biomedical domain. The book covers topics like tribology design, mechanism and machine design, wear and surface engineering, vibration and noise engineering, biomechanics and biomedical engineering, industrial thermodynamics, and thermal engineering. Case studies citing practical challenges and their solutions using appropriate techniques and modern engineering tools are also discussed. Given its contents, this book will prove useful to students, researchers as well as practitioners.




Wildland Fire Dynamics


Book Description

Wildland fires are among the most complicated environmental phenomena to model. Fire behavior models are commonly used to predict the direction and rate of spread of wildland fires based on fire history, fuel, and environmental conditions; however, more sophisticated computational fluid dynamic models are now being developed. This quantitative analysis of fire as a fluid dynamic phenomenon embedded in a highly turbulent flow is beginning to reveal the combined interactions of the vegetative structure, combustion-driven convective effects, and atmospheric boundary layer processes. This book provides an overview of the developments in modeling wildland fire dynamics and the key dynamical processes involved. Mathematical and dynamical principles are presented, and the complex phenomena that arise in wildland fire are discussed. Providing a state-of-the-art survey, it is a useful reference for scientists, researchers, and graduate students interested in wildland fire behavior from a broad range of fields.




AEROTECH V: Progressive Aerospace Research


Book Description

Selected, peer reviewed papers from the AEROTECH V Conference, October 29-30, 2014, Kuala Lumpur, Malaysia




Rivers – Physical, Fluvial and Environmental Processes


Book Description

This book describes the domain of research and investigation of physical, chemical and biological attributes of flowing water, and it deals with a cross-disciplinary field of study combining physical, geophysical, hydraulic, technological, environmental interests. It aims to equip engineers, geophysicists, managers working in water-related arenas as well as advanced students and researchers with the most up to date information available on the state of knowledge about rivers, particularly their physical, fluvial and environmental processes. Information from various but also interrelated areas available in one volume is the main benefit for potential readers. All chapters are prepared by leading experts from the leading research laboratories from all over the world.







Marine Composites


Book Description

Marine Composites: Design and Performance presents up-to-date information and recent research findings on the application and use of advanced fibre-reinforced composites in the marine environment. Following the success of their previously published title: Marine Applications of Advanced Fibre-reinforced Composites which was published in 2015; this exemplary new book provides comprehensive information on materials selection, characterization, and performance. There are also dedicated sections on sandwich structures, manufacture, advanced concepts, naval architecture and design considerations, and various applications. The book will be an essential reference resource for designers, materials engineers, manufactures, marine scientists, mechanical engineers, civil engineers, coastal engineers, boat manufacturers, offshore platform and marine renewable design engineers. - Presents a unique, high-level reference on composite materials and their application and use in marine structures - Provides comprehensive coverage on all aspects of marine composites, including the latest advances in damage modelling and assessment of performance - Contains contributions from leading experts in the field, from both industry and academia - Covers a broad range of naval, offshore and marine structures




Offshore Renewable Energy: Ocean Waves, Tides and Offshore Wind


Book Description

This book is a printed edition of the Special Issue "Offshore Renewable Energy: Ocean Waves, Tides and Offshore Wind" that was published in Energies