Antenna Theory


Book Description

The discipline of antenna theory has experienced vast technological changes. In response, Constantine Balanis has updated his classic text, Antenna Theory, offering the most recent look at all the necessary topics. New material includes smart antennas and fractal antennas, along with the latest applications in wireless communications. Multimedia material on an accompanying CD presents PowerPoint viewgraphs of lecture notes, interactive review questions, Java animations and applets, and MATLAB features. Like the previous editions, Antenna Theory, Third Edition meets the needs of electrical engineering and physics students at the senior undergraduate and beginning graduate levels, and those of practicing engineers as well. It is a benchmark text for mastering the latest theory in the subject, and for better understanding the technological applications. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.







GPS/GNSS Antennas


Book Description

This practical resource provides a current and comprehensive treatment of GPS/GNSS antennas, taking into account modernized systems and new and developing applications. The book presents a number of key applications, describing corresponding receiver architectures and antenna details. You find important discussions on antenna characteristics, including theory of operation, gain, bandwidth, polarization, phase center, mutual coupling effects, and integration with active components. Moreover, you get expert guidance on the design of adaptive arrays and signal processing techniques used to mitigate interference such as jamming. Addressing critical GNSS antenna high precision requirements, this in-depth book explains the relationships between antenna gain, satellite visibility, geometric dilution of precision, and the carrier-to-noise density ratio. The book delineates requirements for both dual-band and tri-band antennas. You get detailed coverage of a wide range of antenna designs, including microstrip patch, quadrafilar helix, axial mode helix, spiral, inverted L, and planar inverted F antennas. Moreover, you find a discussion on new magnetic metamaterialù substrates and other dielectric substrate materials. Further, this comprehensive book presents designs for very compact GNSS antennas for personal handheld devices and automobiles.




Index of Conference Proceedings


Book Description




Electromagnetics in a Complex World


Book Description

Provides the state of the art of modelling, simulation and calculation methods for electromagnetic fields and waves and their application.




Antenna and EM Modeling with MATLAB Antenna Toolbox


Book Description

ANTENNA AND EM MODELING WITH MATLAB ANTENNA TOOLBOX™ An essential text to MATLAB Antenna Toolbox™ as accessible and easy-to-use full-wave antenna modeling tool Antenna and EM Modeling with MATLAB Antenna Toolbox™ is a textbook on antennas intended for a one semester course. The core philosophy is to introduce the key antenna concepts and follow them up with full-wave modeling and optimization in the MATLAB Antenna Toolbox™. Such an approach will enable immediate testing of theoretical concepts by experimenting in software. It also provides the direct path to research work. The fundamental families of antennas — dipoles, loops, patches, and traveling wave antennas — are discussed in detail, together with the respective antenna arrays. Using antenna parameters such as impedance, reflection coefficient, efficiency, directivity, and gain, the reader is introduced to the different ways of understanding the performance of an antenna. Written for senior undergraduates, graduates as well as RF/Antenna engineers, Antenna and EM Modeling with Antenna Toolbox™ is a resource that: Provides 14 video assisted laboratories on using Antenna Toolbox™ Includes approximately 50 real-world examples in antenna and array design Offers approximately 200 homework problems Provides multiple ready-to-use standalone MATLAB® scripts




Advances in Broadband Communication and Networks


Book Description

Broadband communications has become the major focus for industry for offering rich multimedia IP services in next generation networks. This book deals with the state-of-the-art and the underlying principles of key technologies which facilitate broadband telecommunications including millimetre wave gigabit Ethernet, terahertz communication, multiple input multiple output (MIMO) technology, orthogonal frequency division multiplex (OFDM), ultra wideband (UWB) and the fourth generation (4G) network technologies. The book illustrates the use of these technologies, including high resolution three-dimensional millimetre wave radar imaging and terahertz imaging techniques. Within the next few years advances in graphic rendering and the application of millimetre wave radar technology will enable high resolution radar surveillance and operators of industrial processes to control their machines and to navigate remotely even in poor visibility environments. The principles and performance of terahertz imaging are also demonstrated in this important book. The performance and success of emerging all-IP networks depend largely on the efficiency of broadband technologies and this book provides the basis for 4G networks and explores key performance measures such as quality of service and handover between distributed networks (mobile and fixed). The book also demonstrates the medical and biomedical applications of broadband wireless communications.




Time-frequency Transforms for Radar Imaging and Signal Analysis


Book Description

This resource introduces a new image formation algorithm based on time-frequency-transforms, showing its advantage over the more conventional Fourier-based image formation. Referenced with over 170 equations and 80 illustrations, the book presents new algorithms that help improve the result of radar imaging and signal processing.




Systems Engineering of Phased Arrays


Book Description

Phased arrays, while traditionally used in radar systems, are now being used or proposed for use in internet of things (IoT) networks, high-speed back haul communication, terabit-per-second satellite systems, 5G mobile networks, and mobile phones. This book considers systems engineering of phased arrays and addresses not only radar, but also these modern applications. It presents a system-level perspective and approach that is essential for the successful development of modern phased arrays. Using practical examples, this book helps solve problems often encountered by technical professionals. Thermal management challenges, antenna element design issues, and architectures solutions are explored as well as the benefits and challenges of digital beam forming. This book provides the information required to train engineers to design and develop phased arrays and contains questions at the end of each chapter that professors will find useful for instruction.