2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)


Book Description

Following the 20 years tradition of the SISPAD conference series as the leading forum for Technology Computer Aided Design (TCAD), the conference provides an opportunity for the presentation and discussion of recent advances in modeling and simulation of semiconductor devices, processes and equipment The scientific program consists of invited and contributed presentations and a poster session Companion workshops are planned for September 5, 2016




Fabless Semiconductor Manufacturing


Book Description

This book deals with 3D nanodevices such as nanowire and nanosheet transistors at 7 nm and smaller technology nodes. It discusses technology computer-aided design (TCAD) simulations of stress- and strain-engineered advanced semiconductor devices, including III-nitride and RF FDSOI CMOS, for flexible and stretchable electronics. The book focuses on how to set up 3D TCAD simulation tools, from mask layout to process and device simulation, including fabless intelligent manufacturing. The simulation examples chosen are from the most popular devices in use today and provide useful technology and device physics insights. In order to extend the role of TCAD in the More-than-Moore era, the design issues related to strain engineering for flexible and stretchable electronics have been introduced for the first time.




2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)


Book Description

Following the 20 years tradition of the SISPAD conference series as the leading forum for Technology Computer Aided Design (TCAD), the conference provides an opportunity for the presentation and discussion of recent advances in modeling and simulation of semiconductor devices, processes and equipment The scientific program consists of invited and contributed presentations and a poster session Companion workshops are planned for September 5, 2016




Advances in Non-volatile Memory and Storage Technology


Book Description

Advances in Nonvolatile Memory and Storage Technology, Second Edition, addresses recent developments in the non-volatile memory spectrum, from fundamental understanding, to technological aspects. The book provides up-to-date information on the current memory technologies as related by leading experts in both academia and industry. To reflect the rapidly changing field, many new chapters have been included to feature the latest in RRAM technology, STT-RAM, memristors and more. The new edition describes the emerging technologies including oxide-based ferroelectric memories, MRAM technologies, and 3D memory. Finally, to further widen the discussion on the applications space, neuromorphic computing aspects have been included. This book is a key resource for postgraduate students and academic researchers in physics, materials science and electrical engineering. In addition, it will be a valuable tool for research and development managers concerned with electronics, semiconductors, nanotechnology, solid-state memories, magnetic materials, organic materials and portable electronic devices. - Discusses emerging devices and research trends, such as neuromorphic computing and oxide-based ferroelectric memories - Provides an overview on developing nonvolatile memory and storage technologies and explores their strengths and weaknesses - Examines improvements to flash technology, charge trapping and resistive random access memory




Miniaturized Transistors


Book Description

What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications.




Beyond-CMOS


Book Description

Recent advances in physics, material sciences and technology have allowed the rise of new paradigms with bright prospects for digital electronics, going beyond the reach of Moore's law, which details the scaling limit of electronic devices in terms of size and power. This book presents original and innovative topics in the field of beyond CMOS electronics, ranging from steep slope devices and molecular electronics to spintronics, valleytronics, superconductivity and optical chips. Written by globally recognized leading research experts, each chapter of this book will provide an introductory overview of their topic and illustrate the state of the art and future challenges. Aimed not only at students and those new to this field, but also at well-experienced researchers, Beyond-CMOS provides extremely clear and exciting perspectives about the technology of tomorrow, and is thus an effective tool for understanding and developing new ideas, materials and architectures.




The Physics of Semiconductor Devices


Book Description

This book disseminates the current knowledge of semiconductor physics and its applications across the scientific community. It is based on a biennial workshop that provides the participating research groups with a stimulating platform for interaction and collaboration with colleagues from the same scientific community. The book discusses the latest developments in the field of III-nitrides; materials & devices, compound semiconductors, VLSI technology, optoelectronics, sensors, photovoltaics, crystal growth, epitaxy and characterization, graphene and other 2D materials and organic semiconductors.




Beyond Si-Based CMOS Devices


Book Description




Large-Scale Scientific Computing


Book Description

This book constitutes revised papers from the 12th International Conference on Large-Scale Scientific Computing, LSSC 2019, held in Sozopol, Bulgaria, in June 2019. The 70 papers presented in this volume were carefully reviewed and selected from 81 submissions. The book also contains two invited talks. The papers were organized in topical sections named as follows: control and optimization of dynamical systems; meshfree and particle methods; fractional diffusion problems: numerical methods, algorithms and applications; pore scale flow and transport simulation; tensors based algorithms and structures in optimization and applications; HPC and big data: algorithms and applications; large-scale models: numerical methods, parallel computations and applications; monte carlo algorithms: innovative applications in conjunctions with other methods; application of metaheuristics to large-scale problems; large scale machine learning: multiscale algorithms and performance guarantees; and contributed papers.




Numerical Methods and Applications


Book Description

This book constitutes the thoroughly refereed post-conference proceedings of the 9th International Conference on Numerical Methods and Applications, NMA 2018, held in Borovets, Bulgaria, in August 2018. The 56 revised regular papers presented were carefully reviewed and selected from 61 submissions for inclusion in this book. The papers are organized in the following topical sections: numerical search and optimization; problem-driven numerical method: motivation and application, numerical methods for fractional diffusion problems; orthogonal polynomials and numerical quadratures; and Monte Carlo and Quasi-Monte Carlo methods.