3D QSAR in Drug Design


Book Description

Significant progress has been made in the study of three-dimensional quantitative structure-activity relationships (3D QSAR) since the first publication by Richard Cramer in 1988 and the first volume in the series. 3D QSAR in Drug Design. Theory, Methods and Applications, published in 1993. The aim of that early book was to contribute to the understanding and the further application of CoMFA and related approaches and to facilitate the appropriate use of these methods. Since then, hundreds of papers have appeared using the quickly developing techniques of both 3D QSAR and computational sciences to study a broad variety of biological problems. Again the editor(s) felt that the time had come to solicit reviews on published and new viewpoints to document the state of the art of 3D QSAR in its broadest definition and to provide visions of where new techniques will emerge or new appli- tions may be found. The intention is not only to highlight new ideas but also to show the shortcomings, inaccuracies, and abuses of the methods. We hope this book will enable others to separate trivial from visionary approaches and me-too methodology from in- vative techniques. These concerns guided our choice of contributors. To our delight, our call for papers elicited a great many manuscripts.




3D QSAR in Drug Design


Book Description

Progress in medicinal chemistry and in drug design depends on our ability to understand the interactions of drugs with their biological targets. Classical QSAR studies describe biological activity in terms of physicochemical properties of substituents in certain positions of the drug molecules. The purpose of this book is twofold: On the one hand, both the novice and the experienced user will be introduced to the theory and application of 3D QSAR analyses, and on the other, a comprehensive overview of the scope and limitations of these methods is given. The detailed discussion of the present state of the art should enable scientists to further develop and improve these powerful new tools. The greater part of the book is dedicated to the theoretical background of 3D QSAR and to a discussion of CoMFA applications. In addition, various other 3D QSAR approaches and some CoMFA-related methods are described in detail. Thus, the book should be valuable for medicinal, agricultural and theoretical chemists, biochemists and biologists, as well as for other scientists interested in drug design. Its content, starting at a very elementary level and proceeding to the latest methodological results, the strengths and limitations of 3D QSAR approaches, makes the book also appropriate as a text for teaching and for graduate student courses.




Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment


Book Description

Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment describes the historical evolution of quantitative structure-activity relationship (QSAR) approaches and their fundamental principles. This book includes clear, introductory coverage of the statistical methods applied in QSAR and new QSAR techniques, such as HQSAR and G-QSAR. Containing real-world examples that illustrate important methodologies, this book identifies QSAR as a valuable tool for many different applications, including drug discovery, predictive toxicology and risk assessment. Written in a straightforward and engaging manner, this is the ideal resource for all those looking for general and practical knowledge of QSAR methods. Includes numerous practical examples related to QSAR methods and applications Follows the Organization for Economic Co-operation and Development principles for QSAR model development Discusses related techniques such as structure-based design and the combination of structure- and ligand-based design tools




3D QSAR in Drug Design


Book Description

Significant progress has been made in the study of three-dimensional quantitative structure-activity relationships (3D QSAR) since the first publication by Richard Cramer in 1988 and the first volume in the series, 3D QSAR in Drug Design. Theory, Methods and Applications, published in 1993. The aim of that early book was to contribute to the understanding and the further application of CoMFA and related approaches and to facilitate the appropriate use of these methods. Since then, hundreds of papers have appeared using the quickly developing techniques of both 3D QSAR and computational sciences to study a broad variety of biological problems. Again the editor(s) felt that the time had come to solicit reviews on published and new viewpoints to document the state of the art of 3D QSAR in its broadest definition and to provide visions of where new techniques will emerge or new appli- tions may be found. The intention is not only to highlight new ideas but also to show the shortcomings, inaccuracies, and abuses of the methods. We hope this book will enable others to separate trivial from visionary approaches and me-too methodology from in- vative techniques. These concerns guided our choice of contributors. To our delight, our call for papers elicited a great many manuscripts.




3D Qsar in Drug Design


Book Description




QSAR and Drug Design: New Developments and Applications


Book Description

Based on topics presented at the Annual Japanese (Quantitative) Structure-Activity Relationship Symposium and the Biennial China-Japan Drug Design and Development conference, the topics in this volume cover almost every procedure and subdiscipline in the SAR discipline. They are categorized in three sections. Section one includes topics illustrating newer methodologies relating to ligand-receptor, molecular graphics and receptor modelling as well as the three-dimensional (Q)SAR examples with the active analogue approach and the comparative molecular field analysis. In section 2 the hydrophobicity parameters, log P (1-octanol/water) for compound series of medicinal-chemical interest are analysed physico-organic chemically. Section 3 contains the examples based on the traditional Hansch QSAR approach. A variety of methodologies and procedures are presented in this single volume, along with their methodological philosophies.




QSAR


Book Description

Finding the new remedy for a certain disease: an inspired goal. QSAR, an invaluable tool in drug design, aids scientists to attain this aim. This book is a long-awaited comprehensive text to QSAR and related approaches. It provides a practice-oriented introduction to the theory, methods and analyses for QSAR relationships, including modelling-based and 3D approaches. Hugo Kubinyi is a leading expert in QSAR. Readers will benefit from the author's 20 years of practical experience, from his careful calculations and recalculations of thousands of QSAR equations. Among the topics covered are: - physiocochemical parameters - quantitative models - statistical methods - Hansch analysis - Free Wilson analysis - 3D-QSAR approaches The book can readily be used as a textbook due to its high didactic value and numerous examples (over 200 equations and 1100 references).







Quantitative Drug Design


Book Description

Since the publication of the first edition, the field has changed dramatically. Scientists can now explicitly consider 3D features in quantitative structure-activity relationship (QSAR) studies and often have the 3D structure of the macromolecular target to guide the 3D QSAR. Improvements in computer hardware and software have also made the methods




Computational Drug Design


Book Description

Helps you choose the right computational tools and techniques to meet your drug design goals Computational Drug Design covers all of the major computational drug design techniques in use today, focusing on the process that pharmaceutical chemists employ to design a new drug molecule. The discussions of which computational tools to use and when and how to use them are all based on typical pharmaceutical industry drug design processes. Following an introduction, the book is divided into three parts: Part One, The Drug Design Process, sets forth a variety of design processes suitable for a number of different drug development scenarios and drug targets. The author demonstrates how computational techniques are typically used during the design process, helping readers choose the best computational tools to meet their goals. Part Two, Computational Tools and Techniques, offers a series of chapters, each one dedicated to a single computational technique. Readers discover the strengths and weaknesses of each technique. Moreover, the book tabulates comparative accuracy studies, giving readers an unbiased comparison of all the available techniques. Part Three, Related Topics, addresses new, emerging, and complementary technologies, including bioinformatics, simulations at the cellular and organ level, synthesis route prediction, proteomics, and prodrug approaches. The book's accompanying CD-ROM, a special feature, offers graphics of the molecular structures and dynamic reactions discussed in the book as well as demos from computational drug design software companies. Computational Drug Design is ideal for both students and professionals in drug design, helping them choose and take full advantage of the best computational tools available. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.