3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics


Book Description

Technology computer-aided design, or TCAD, is critical to today’s semiconductor technology and anybody working in this industry needs to know something about TCAD. This book is about how to use computer software to manufacture and test virtually semiconductor devices in 3D. It brings to life the topic of semiconductor device physics, with a hands-on, tutorial approach that de-emphasizes abstract physics and equations and emphasizes real practice and extensive illustrations. Coverage includes a comprehensive library of devices, representing the state of the art technology, such as SuperJunction LDMOS, GaN LED devices, etc.




Advanced Field-Effect Transistors


Book Description

Advanced Field-Effect Transistors: Theory and Applications offers a fresh perspective on the design and analysis of advanced field-effect transistor (FET) devices and their applications. The text emphasizes both fundamental and new paradigms that are essential for upcoming advancement in the field of transistors beyond complementary metal–oxide–semiconductors (CMOS). This book uses lucid, intuitive language to gradually increase the comprehension of readers about the key concepts of FETs, including their theory and applications. In order to improve readers’ learning opportunities, Advanced Field-Effect Transistors: Theory and Applications presents a wide range of crucial topics: Design and challenges in tunneling FETs Various modeling approaches for FETs Study of organic thin-film transistors Biosensing applications of FETs Implementation of memory and logic gates with FETs The advent of low-power semiconductor devices and related implications for upcoming technology nodes provide valuable insight into low-power devices and their applicability in wireless, biosensing, and circuit aspects. As a result, researchers are constantly looking for new semiconductor devices to meet consumer demand. This book gives more details about all aspects of the low-power technology, including ongoing and prospective circumstances with fundamentals of FET devices as well as sophisticated low-power applications.




Integrated Power Devices and TCAD Simulation


Book Description

From power electronics to power integrated circuits (PICs), smart power technologies, devices, and beyond, Integrated Power Devices and TCAD Simulation provides a complete picture of the power management and semiconductor industry. An essential reference for power device engineering students and professionals, the book not only describes the physics inside integrated power semiconductor devices such lateral double-diffused metal oxide semiconductor field-effect transistors (LDMOSFETs), lateral insulated-gate bipolar transistors (LIGBTs), and super junction LDMOSFETs but also delivers a simple introduction to power management systems. Instead of abstract theoretical treatments and daunting equations, the text uses technology computer-aided design (TCAD) simulation examples to explain the design of integrated power semiconductor devices. It also explores next generation power devices such as gallium nitride power high electron mobility transistors (GaN power HEMTs). Including a virtual process flow for smart PIC technology as well as a hard-to-find technology development organization chart, Integrated Power Devices and TCAD Simulation gives students and junior engineers a head start in the field of power semiconductor devices while helping to fill the gap between power device engineering and power management systems.




Handbook of Optoelectronic Device Modeling and Simulation


Book Description

• Provides a comprehensive survey of fundamental concepts and methods for optoelectronic device modeling and simulation. • Gives a broad overview of concepts with concise explanations illustrated by real results. • Compares different levels of modeling, from simple analytical models to complex numerical models. • Discusses practical methods of model validation. • Includes an overview of numerical techniques.




Entrepreneurship in Power Semiconductor Devices, Power Electronics, and Electric Machines and Drive Systems


Book Description

Entrepreneurship in Power Semiconductor Devices, Power Electronics, and Electric Machines and Drive Systems introduces the basics of entrepreneurship and a methodology for the study of entrepreneurship in electrical engineering and other engineering fields. Entrepreneurship is considered here in three fields of electrical engineering, viz. power semiconductor devices, power electronics and electric machines and drive systems, and their current practice. It prepares the reader by providing a review of the subject matter in the three fields, their current status in research and development with analysis aspect as needed, thus allowing readers to gain self-sufficiency while reading the book. Each field’s emerging applications, current market and future market forecasts are introduced to understand the basis and need for emerging startups. Practical learning is introduced in: (i) power semiconductor devices entrepreneurship through the prism of 20 startups in detail, (ii) power electronics entrepreneurship through 28 startup companies arranged under various application fields and (iii) electric machines and drive systems entrepreneurship through 15 startups in electromagnetic and 1 in electrostatic machines and drive systems. The book: (i) demystifies entrepreneurship in a practical way to equip engineers and students with entrepreneurship as an option for their professional growth, pursuit and success; (ii) provides engineering managers and corporate-level executives a detailed view of entrepreneurship activities in the considered three fields that may potentially impact their businesses, (iii) provides entrepreneurship education in an electrical engineering environment and with direct connection and correlation to their fields of study and (iv) endows a methodology that can be effectively employed not only in the three illustrated fields of electrical engineering but in other fields as well. This book is for electrical engineering students and professionals. For use in undergraduate and graduate courses in electrical engineering, the book contains discussion questions, exercise problems, team and class projects, all from a practical point of view, to train students and assist professionals for future entrepreneurship endeavors.




Computer Aided Design Of Micro- And Nanoelectronic Devices


Book Description

Micro and nanoelectronic devices are the prime movers for electronics, which is essential for the current information age. This unique monograph identifies the key stages of advanced device design and integration in semiconductor manufacturing. It brings into one resource a comprehensive device design using simulation. The book presents state-of-the-art semiconductor device design using the latest TCAD tools.Professionals, researchers, academics, and graduate students in electrical & electronic engineering and microelectronics will benefit from this reference text.







Differentiated Layout Styles for MOSFETs


Book Description

This book describes in detail the semiconductor physics and the effects of the high temperatures and ionizing radiations in the electrical behavior of the Metal-OxideSemiconductor Field Effect Transistors (MOSFETs), implemented with the first and second generations of the differentiated layout styles. The authors demonstrate a variety of innovative layout styles for MOSFETs, enabling readers to design analog and RF MOSFETs that operate in a high-temperature wide range and an ionizing radiation environment with high electrical performance and reduced die area.




Parasitic Substrate Coupling in High Voltage Integrated Circuits


Book Description

This book introduces a new approach to model and predict substrate parasitic failures in integrated circuits with standard circuit design tools. The injection of majority and minority carriers in the substrate is a recurring problem in smart power ICs containing high voltage, high current switching devices besides sensitive control, protection and signal processing circuits. The injection of parasitic charges leads to the activation of substrate bipolar transistors. This book explores how these events can be evaluated for a wide range of circuit topologies. To this purpose, new generalized devices implemented in Verilog-A are used to model the substrate with standard circuit simulators. This approach was able to predict for the first time the activation of a latch-up in real circuits through post-layout SPICE simulation analysis. Discusses substrate modeling and circuit-level simulation of parasitic bipolar device coupling effects in integrated circuits; Includes circuit back-annotation of the parasitic lateral n-p-n and vertical p-n-p bipolar transistors in the substrate; Uses Spice for simulation and characterization of parasitic bipolar transistors, latch-up of the parasitic p-n-p-n structure, and electrostatic discharge (ESD) protection devices; Offers design guidelines to reduce couplings by adding specific protections.




3D TCAD Simulation for CMOS Nanoeletronic Devices


Book Description

This book demonstrates how to use the Synopsys Sentaurus TCAD 2014 version for the design and simulation of 3D CMOS (complementary metal–oxide–semiconductor) semiconductor nanoelectronic devices, while also providing selected source codes (Technology Computer-Aided Design, TCAD). Instead of the built-in examples of Sentaurus TCAD 2014, the practical cases presented here, based on years of teaching and research experience, are used to interpret and analyze simulation results of the physical and electrical properties of designed 3D CMOSFET (metal–oxide–semiconductor field-effect transistor) nanoelectronic devices. The book also addresses in detail the fundamental theory of advanced semiconductor device design for the further simulation and analysis of electric and physical properties of semiconductor devices. The design and simulation technologies for nano-semiconductor devices explored here are more practical in nature and representative of the semiconductor industry, and as such can promote the development of pioneering semiconductor devices, semiconductor device physics, and more practically-oriented approaches to teaching and learning semiconductor engineering. The book can be used for graduate and senior undergraduate students alike, while also offering a reference guide for engineers and experts in the semiconductor industry. Readers are expected to have some preliminary knowledge of the field.