IUTAM Laminar-Turbulent Transition


Book Description

This volume comprises the carefully revised papers of the 9th IUTAM Symposium on Laminar-Turbulent Transition, held at the Imperial College, London, UK, in September 2019. The papers focus on the leading research in understanding transition to turbulence, which is a challenging topic of fluid mechanics and arises in many modern technologies as well as in nature. The proceedings are of interest for researchers in fluid mechanics and industry who have to handle these types of problems, such as in the aeronautical sector.




Proceedings of the AIAA Modeling and Simulation Technologies Conference


Book Description

Topics for the 1997 conference on modelling and simulation technologies included: motion systems; rotor-craft and air cushion vehicle dynamics and modelling; pilot training and low-cost simulation; weapons and engagement modelling and simulation; simulator network and information technologies; visual, radarf and environmental modelling and simulation; test and evaluation; space systems; simulator fidelity; aircraft dynamics, modelling and performance; simulator development and software re-use; human factors; and research and test facilities.




The Koopman Operator in Systems and Control


Book Description

This book provides a broad overview of state-of-the-art research at the intersection of the Koopman operator theory and control theory. It also reviews novel theoretical results obtained and efficient numerical methods developed within the framework of Koopman operator theory. The contributions discuss the latest findings and techniques in several areas of control theory, including model predictive control, optimal control, observer design, systems identification and structural analysis of controlled systems, addressing both theoretical and numerical aspects and presenting open research directions, as well as detailed numerical schemes and data-driven methods. Each contribution addresses a specific problem. After a brief introduction of the Koopman operator framework, including basic notions and definitions, the book explores numerical methods, such as the dynamic mode decomposition (DMD) algorithm and Arnoldi-based methods, which are used to represent the operator in a finite-dimensional basis and to compute its spectral properties from data. The main body of the book is divided into three parts: theoretical results and numerical techniques for observer design, synthesis analysis, stability analysis, parameter estimation, and identification; data-driven techniques based on DMD, which extract the spectral properties of the Koopman operator from data for the structural analysis of controlled systems; and Koopman operator techniques with specific applications in systems and control, which range from heat transfer analysis to robot control. A useful reference resource on the Koopman operator theory for control theorists and practitioners, the book is also of interest to graduate students, researchers, and engineers looking for an introduction to a novel and comprehensive approach to systems and control, from pure theory to data-driven methods.




IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018


Book Description

This volume contains the proceedings of the IUTAM Symposium on Model Order Reduction of Coupled System, held in Stuttgart, Germany, May 22–25, 2018. For the understanding and development of complex technical systems, such as the human body or mechatronic systems, an integrated, multiphysics and multidisciplinary view is essential. Many problems can be solved within one physical domain. For the simulation and optimization of the combined system, the different domains are connected with each other. Very often, the combination is only possible by using reduced order models such that the large-scale dynamical system is approximated with a system of much smaller dimension where the most dominant features of the large-scale system are retained as much as possible. The field of model order reduction (MOR) is interdisciplinary. Researchers from Engineering, Mathematics and Computer Science identify, explore and compare the potentials, challenges and limitations of recent and new advances.




Intelligent Algorithms in Software Engineering


Book Description

This book gathers the refereed proceedings of the Intelligent Algorithms in Software Engineering Section of the 9th Computer Science On-line Conference 2020 (CSOC 2020), held on-line in April 2020. Software engineering research and its applications to intelligent algorithms have now assumed an essential role in computer science research. In this book, modern research methods, together with applications of machine and statistical learning in software engineering research, are presented.




Shock Wave-Boundary-Layer Interactions


Book Description

Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.




Numerical Analysis meets Machine Learning


Book Description

Numerical Analysis Meets Machine Learning series, highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an international board of authors. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Numerical Analysis series - Updated release includes the latest information on the Numerical Analysis Meets Machine Learning




Modeling, Simulation, and Optimization


Book Description

This book features selected contributions in the areas of modeling, simulation, and optimization. The contributors discusses requirements in problem solving for modeling, simulation, and optimization. Modeling, simulation, and optimization have increased in demand in exponential ways and how potential solutions might be reached. They describe how new technologies in computing and engineering have reduced the dimension of data coverage worldwide, and how recent inventions in information and communication technology (ICT) have inched towards reducing the gaps and coverage of domains globally. The chapters cover how the digging of information in a large data and soft-computing techniques have contributed to a strength in prediction and analysis, for decision making in computer science, technology, management, social computing, green computing, and telecom. The book provides an insightful reference to the researchers in the fields of engineering and computer science. Researchers, academics, and professionals will benefit from this volume. Features selected expanded papers in modeling, simulation, and optimization from COMPSE 2016; Includes research into soft computing and its application in engineering and technology; Presents contributions from global experts in academia and industry in modeling, simulation, and optimization.




Proceedings of the 8th International Symposium on Solid Mechanics


Book Description

This book presents the proceedings of Mecsol 2022. The papers cover multidisciplinary topics, including Fatigue and Failure Analyses; Composite Materials and Structures; Elasticity, Plasticity, Damage and Fracture Mechanics; Viscoelasticity and Viscoplasticity; Impact Engineering; Structural Reliability Methods and Reliability-Based Design Optimization; Optimization of Materials, Fluids and Structures; Numerical Methods; Nonlinear Analyses; High-Performance Computing applied to Solid Mechanics; and Artificial Intelligence- and Neural Network-supported applications.




Scramjet Propulsion


Book Description