A Celebration of Mathematical Modeling


Book Description

ThisvolumecelebratestheeightiethbirthdayofJosephB. Keller. The authors who contributed to this volume belong to what can be called the “Keller school of applied mathematics. ” They are former students, postdoctoral fellows and visiting scientists who have collaborated with Joe (some of them still do) during his long career. They all look at Joe as their ultimate (role) model. JoeKeller’sdistinguishedcareerhasbeendividedbetweentheCourant Institute of Mathematical Sciences at New York University, where he received all his degrees (his PhD adviser being the great R. Courant himself) and served as a professor for 30 years, and Stanford University, where he has been since 1978. The appended photos highlight some scenes from the old days. Those who know Joe Keller’s work have been always amazed by its diversity and breadth. It is considered a well-known truth that there is not a single important area in applied mathematics or physics which Keller did not contribute to. This can be appreciated, for example, by glancing through his list of publication included in this volume. App- priately, the papers in this book, written with Joe’s inspiration, cover a variety of application areas; together they span the broad subject of mathematical modeling. The models discussed in the book describe the behavior of various systems such as those related to ?nance, waves, - croorganisms, shocks, DNA, ?ames, contact, optics, ?uids, bubbles and jets. Joe’s activity includes many more areas, which unfortunately are not represented here.




A Celebration of Mathematical Modeling


Book Description

This volume celebrates the eightieth birthday of the famous applied mathematician Joseph B. Keller. The book contains 12 chapters, each on a specific area of mathematical modeling, written by established researchers who have collaborated with J.B. Keller during his long career. These chapters, all inspired by J.B. Keller, deal with a variety of application fields and together span the broad subject of mathematical modeling. The models discussed in the book describe the behavior of various systems such as those related to finance, waves, microorganisms, shocks, DNA, flames, contact, optics, fluids, bubbles and jets. The book also contains a preface written by the Editors, a full list of J.B. Keller's publications, and a comprehensive index. The book is intended for mathematicians, scientists and engineers, as well as graduate students in these fields, who are interested in mathematical models of physical phenomena.




Mathematical Modeling and Intelligent Control for Combating Pandemics


Book Description

The contributions in this carefully curated volume, present cutting-edge research in applied mathematical modeling for combating COVID-19 and other potential pandemics. Mathematical modeling and intelligent control have emerged as powerful computational models and have shown significant success in combating any pandemic. These models can be used to understand how COVID-19 or other pandemics can spread, analyze data on the incidence of infectious diseases, and predict possible future scenarios concerning pandemics. This book also discusses new models, practical solutions, and technological advances related to detecting and analyzing COVID-19 and other pandemics based on intelligent control systems that assist decision-makers, managers, professionals, and researchers. Much of the book focuses on preparing the scientific community for the next pandemic, particularly the application of mathematical modeling and intelligent control for combating the Monkeypox virus and Langya Henipavirus.




Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan


Book Description

This book is a tribute to Professor Ian Hugh Sloan on the occasion of his 80th birthday. It consists of nearly 60 articles written by international leaders in a diverse range of areas in contemporary computational mathematics. These papers highlight the impact and many achievements of Professor Sloan in his distinguished academic career. The book also presents state of the art knowledge in many computational fields such as quasi-Monte Carlo and Monte Carlo methods for multivariate integration, multi-level methods, finite element methods, uncertainty quantification, spherical designs and integration on the sphere, approximation and interpolation of multivariate functions, oscillatory integrals, and in general in information-based complexity and tractability, as well as in a range of other topics. The book also tells the life story of the renowned mathematician, family man, colleague and friend, who has been an inspiration to many of us. The reader may especially enjoy the story from the perspective of his family, his wife, his daughter and son, as well as grandchildren, who share their views of Ian. The clear message of the book is that Ian H. Sloan has been a role model in science and life.




Elementary Mathematical Models


Book Description

Explains the relevance and importance of mathematical modelling for a non-technical audience.




A Celebration of Statistics


Book Description

The International Statistical Institute was founded in 1885 and is therefore one of the world's oldest international scientific societies. The field of statistics is still expanding rapidly and possesses a rich variety of applications in many areas of human activity such as science, government, business, industry, and everyday affairs. In consequence, the celebration of the Institute's centenary in 1985 is of considerable interest not only to statisticians but also more widely to the international scientific community. As part of its centennial celebration planning the Institute decided to publish a volume of papers representing the immensely wide range of interests encompassed by statistics in its international context, viewed both from a historical and from a contemporary standpoint. We were fortunate in securing the services of Anthony Atkinson and Stephen Fienberg as Editors of this volume: they have worked hard over a period of several years to put together a most fascinating collection of papers. On behalf of the Institute it is my pleasant duty to thank them and the authors for their contributions. J. DURBIN, President International Statistical Institute Preface The papers in this volume were prepared to help celebrate the centenary of the International Statistical Institute. During the lSI's first 100 years statistics has matured, both as a scientific discipline and as a profession, in ways that the lSI's founders could not possibly have imagined.




Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory


Book Description

This IMA Volume in Mathematics and its Applications MATHEMATICAL APPROACHES FOR EMERGING AND REEMERGING INFECTIOUS DISEASES: MODELS, AND THEORY METHODS is based on the proceedings of a successful one week workshop. The pro ceedings of the two-day tutorial which preceded the workshop "Introduction to Epidemiology and Immunology" appears as IMA Volume 125: Math ematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction. The tutorial and the workshop are integral parts of the September 1998 to June 1999 IMA program on "MATHEMATICS IN BI OLOGY. " I would like to thank Carlos Castillo-Chavez (Director of the Math ematical and Theoretical Biology Institute and a member of the Depart ments of Biometrics, Statistics and Theoretical and Applied Mechanics, Cornell University), Sally M. Blower (Biomathematics, UCLA School of Medicine), Pauline van den Driessche (Mathematics and Statistics, Uni versity of Victoria), and Denise Kirschner (Microbiology and Immunology, University of Michigan Medical School) for their superb roles as organizers of the meetings and editors of the proceedings. Carlos Castillo-Chavez, es pecially, made a major contribution by spearheading the editing process. I am also grateful to Kenneth L. Cooke (Mathematics, Pomona College), for being one of the workshop organizers and to Abdul-Aziz Yakubu (Mathe matics, Howard University) for serving as co-editor of the proceedings. I thank Simon A. Levin (Ecology and Evolutionary Biology, Princeton Uni versity) for providing an introduction.




Some Mathematical Models from Population Genetics


Book Description

This work reflects sixteen hours of lectures delivered by the author at the 2009 St Flour summer school in probability. It provides a rapid introduction to a range of mathematical models that have their origins in theoretical population genetics. The models fall into two classes: forwards in time models for the evolution of frequencies of different genetic types in a population; and backwards in time (coalescent) models that trace out the genealogical relationships between individuals in a sample from the population. Some, like the classical Wright-Fisher model, date right back to the origins of the subject. Others, like the multiple merger coalescents or the spatial Lambda-Fleming-Viot process are much more recent. All share a rich mathematical structure. Biological terms are explained, the models are carefully motivated and tools for their study are presented systematically.




Topics in Mathematical Modeling


Book Description

Topics in Mathematical Modeling is an introductory textbook on mathematical modeling. The book teaches how simple mathematics can help formulate and solve real problems of current research interest in a wide range of fields, including biology, ecology, computer science, geophysics, engineering, and the social sciences. Yet the prerequisites are minimal: calculus and elementary differential equations. Among the many topics addressed are HIV; plant phyllotaxis; global warming; the World Wide Web; plant and animal vascular networks; social networks; chaos and fractals; marriage and divorce; and El Niño. Traditional modeling topics such as predator-prey interaction, harvesting, and wars of attrition are also included. Most chapters begin with the history of a problem, follow with a demonstration of how it can be modeled using various mathematical tools, and close with a discussion of its remaining unsolved aspects. Designed for a one-semester course, the book progresses from problems that can be solved with relatively simple mathematics to ones that require more sophisticated methods. The math techniques are taught as needed to solve the problem being addressed, and each chapter is designed to be largely independent to give teachers flexibility. The book, which can be used as an overview and introduction to applied mathematics, is particularly suitable for sophomore, junior, and senior students in math, science, and engineering.




Mathematics of DNA Structure, Function and Interactions


Book Description

Propelled by the success of the sequencing of the human and many related genomes, molecular and cellular biology has delivered significant scientific breakthroughs. Mathematics (broadly defined) continues to play a major role in this effort, helping to discover the secrets of life by working collaboratively with bench biologists, chemists and physicists. Because of its outstanding record of interdisciplinary research and training, the IMA was an ideal venue for the 2007-2008 IMA thematic year on Mathematics of Molecular and Cellular Biology. The kickoff event for this thematic year was a tutorial on Mathematics of Nucleic Acids, followed by the workshop Mathematics of Molecular and Cellular Biology, held September 15--21 at the IMA. This volume is dedicated to the memory of Nicholas R. Cozzarelli, a dynamic leader who fostered research and training at the interface between mathematics and molecular biology. It contains a personal remembrance of Nick Cozzarelli, plus 15 papers contributed by workshop speakers. The papers give an overview of state-of-the-art mathematical approaches to the understanding of DNA structure and function, and the interaction of DNA with proteins that mediate vital life processes.