A Code for Classifiers
Author : William Stetson Merrill
Publisher :
Page : 262 pages
File Size : 44,31 MB
Release : 1914
Category : Classification
ISBN :
Author : William Stetson Merrill
Publisher :
Page : 262 pages
File Size : 44,31 MB
Release : 1914
Category : Classification
ISBN :
Author : William Stetson Merrill
Publisher : Chicago : American Library Association
Page : 146 pages
File Size : 11,18 MB
Release : 1928
Category : Classification
ISBN :
Author : Corinne Bacon
Publisher :
Page : 42 pages
File Size : 35,52 MB
Release : 1916
Category : Classification
ISBN :
Author : Steven Bird
Publisher : "O'Reilly Media, Inc."
Page : 506 pages
File Size : 16,9 MB
Release : 2009-06-12
Category : Computers
ISBN : 0596555717
This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.
Author : Margaret Mann
Publisher :
Page : 478 pages
File Size : 37,78 MB
Release : 1928
Category : Cataloging
ISBN :
Author : Ralf Herbrich
Publisher : MIT Press
Page : 402 pages
File Size : 34,93 MB
Release : 2001-12-07
Category : Computers
ISBN : 9780262263047
An overview of the theory and application of kernel classification methods. Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier—a limited, but well-established and comprehensively studied model—and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learning, kernel Fisher discriminants, support vector machines, relevance vector machines, Gaussian processes, and Bayes point machines. Then follows a detailed introduction to learning theory, including VC and PAC-Bayesian theory, data-dependent structural risk minimization, and compression bounds. Throughout, the book emphasizes the interaction between theory and algorithms: how learning algorithms work and why. The book includes many examples, complete pseudo code of the algorithms presented, and an extensive source code library.
Author : Friedhelm Schwenker
Publisher : Springer
Page : 240 pages
File Size : 32,83 MB
Release : 2015-06-02
Category : Computers
ISBN : 3319202480
This book constitutes the refereed proceedings of the 12th International Workshop on Multiple Classifier Systems, MCS 2015, held in Günzburg, Germany, in June/July 2015. The 19 revised papers presented were carefully reviewed and selected from 25 submissions. The papers address issues in multiple classifier systems and ensemble methods, including pattern recognition, machine learning, neural network, data mining and statistics. They are organized in topical sections on theory and algorithms and application and evaluation.
Author : Lior Rokach
Publisher : World Scientific
Page : 242 pages
File Size : 30,21 MB
Release : 2010
Category : Computers
ISBN : 9814271071
1. Introduction to pattern classification. 1.1. Pattern classification. 1.2. Induction algorithms. 1.3. Rule induction. 1.4. Decision trees. 1.5. Bayesian methods. 1.6. Other induction methods -- 2. Introduction to ensemble learning. 2.1. Back to the roots. 2.2. The wisdom of crowds. 2.3. The bagging algorithm. 2.4. The boosting algorithm. 2.5. The AdaBoost algorithm. 2.6. No free lunch theorem and ensemble learning. 2.7. Bias-variance decomposition and ensemble learning. 2.8. Occam's razor and ensemble learning. 2.9. Classifier dependency. 2.10. Ensemble methods for advanced classification tasks -- 3. Ensemble classification. 3.1. Fusions methods. 3.2. Selecting classification. 3.3. Mixture of experts and meta learning -- 4. Ensemble diversity. 4.1. Overview. 4.2. Manipulating the inducer. 4.3. Manipulating the training samples. 4.4. Manipulating the target attribute representation. 4.5. Partitioning the search space. 4.6. Multi-inducers. 4.7. Measuring the diversity -- 5. Ensemble selection. 5.1. Ensemble selection. 5.2. Pre selection of the ensemble size. 5.3. Selection of the ensemble size while training. 5.4. Pruning - post selection of the ensemble size -- 6. Error correcting output codes. 6.1. Code-matrix decomposition of multiclass problems. 6.2. Type I - training an ensemble given a code-matrix. 6.3. Type II - adapting code-matrices to the multiclass problems -- 7. Evaluating ensembles of classifiers. 7.1. Generalization error. 7.2. Computational complexity. 7.3. Interpretability of the resulting ensemble. 7.4. Scalability to large datasets. 7.5. Robustness. 7.6. Stability. 7.7. Flexibility. 7.8. Usability. 7.9. Software availability. 7.10. Which ensemble method should be used?
Author : Oded Maimon
Publisher : Springer Science & Business Media
Page : 431 pages
File Size : 34,67 MB
Release : 2007-10-25
Category : Computers
ISBN : 038769935X
Data Mining is the science and technology of exploring large and complex bodies of data in order to discover useful patterns. It is extremely important because it enables modeling and knowledge extraction from abundant data availability. This book introduces soft computing methods extending the envelope of problems that data mining can solve efficiently. It presents practical soft-computing approaches in data mining and includes various real-world case studies with detailed results.
Author : Alvaro Rocha
Publisher : Springer Nature
Page : 622 pages
File Size : 42,24 MB
Release : 2022-05-16
Category : Technology & Engineering
ISBN : 3031048199
This book covers the following main topics: A) information and knowledge management; B) organizational models and information systems; C) software and systems modeling; D) software systems, architectures, applications and tools; E) multimedia systems and applications; F) computer networks, mobility and pervasive systems; G) intelligent and decision support systems; H) big data analytics and applications; I) human–computer interaction; J) ethics, computers and security; K) health informatics; L) information technologies in education; M) information technologies in radio communications; N) technologies for biomedical applications. This book is composed by a selection of articles from The 2022 World Conference on Information Systems and Technologies (WorldCIST'22), held between April 12 and 14, in Budva, Montenegro. WorldCIST is a global forum for researchers and practitioners to present and discuss recent results and innovations, current trends, professional experiences, and challenges of modern information systems and technologies research, together with their technological development and applications.