A Comparative Overview of Mammalian Fertilization


Book Description

In 1964, the Fertilization and Gamete Physiology Research Training Program (FERGAP) was established at the Marine Biological Laboratories, Woods Hole, Massachusetts. Over the course of the next 12 years, under the directorship of Dr. Charles B. Metz, FERGAP brought together, trained, and inspired a generation of students in reproductive biology from all over the world. As students of C. B. Metz and as FERGAP trainees, we would like to dedicate this collected work on comparative mammalian fertilization to our teacher and mentor, Dr. Charles B. Metz. Like a number of authors contributing to this volume, we have been struck by the significant impact that C. B. Metz and FERGAP had on the development of students of reproductive biology. Applying both the classical and molecular techniques of cell biology and immunology to problems of gamete biology, Dr. Metz emphasized a comparative and analytical approach that was reflected in his own research on fertilization in Paramecia, sea urchins, frogs, and mammals. It is hoped that this volume will serve to stimulate students to discover the myriad of fascinating research problems in gamete and reproductive biology. Bonnie S. Dunbar Michael G. O'Rand Houston, Texas Chapel Hill, North Carolina ix Contents Part I COMPARATIVE OVERVIEW OF MAMMALIAN GAMETES The Coevolution of Mammalian Gametes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 J. Michael Bedford I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Gamete Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1. Monotremes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . . . . . . . . . . . . . . 2.2. Marsupials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 . . . . . . . . . . . . . . . 2.3. Eutherians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3. Gamete Maturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 . . . . . . . . . . . . . . . 3 .1. Oocyte Maturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 . . . . . . . . . . . . . 3.2. Sperm Maturation in the Male . . . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . . .




Comparative Reproductive Biology


Book Description

When considering the physiological systems of the body, the degree of species variation within the reproductive system compared to other systems is remarkable. Furthermore, it is essential that researchers, educators, and students alike remain aware of the fundamental comparative differences in the reproductive biology of domestic species. Written by renowned scientists in their respective fields, Comparative Reproductive Biology is a comprehensive reference on the reproductive systems of domestic species. The book offers both broad and specific knowledge in areas that have advanced the field in recent years, including advances in cell and molecular biology applied to reproduction, transgenic animal production, gender selection, artificial insemination, embryo transfer, cryobiology, animal cloning and many others. This seminal text includes topics in animal reproduction that are usually only found as part of other books in animal science such as anatomy, histology, physiology, radiology, ultrasonogrophy, and others. Comprehensive reference of the reproductive systems of domestic species Written by a team of top researchers Richly illustrated throughout, including 12 pages of color images




Fertilization in Protozoa and Metazoan Animals


Book Description

Reproduction is the origination of new organisms from pre-existing ones. Among more than 35 separated forms of reproduction including several types of gamogony, parthenogenesis, agamogenesis, fission and division, and plas motomy, the bisexual mode of reproduction via fertilization provides genetic variability that allows species to adapt quickly to competitive and constantly changing environments. Several excellent reviews and books have been written in the past to analyse the mechanisms of fertilization in different eukaryotic species. During the last few years, however, renewed attention has been paid to examining the process of oocyte fertilization at the cellular/molecular level not only within a single species/group but also through different phylogenetic lineages. As a result of this effort, knowledge of the molecular pathways used by oocytes and spermatozoa at fertilization has increased, but still many ques tions remain to be answered. Being aware of the necessity of providing an inte grated view of the process of fertilization, this book has been entirely devoted to reviewing the process of oocyte fertilization at the cellular/molecular level in two different and separated groups of eukaryotic organisms: protozoa and metazoan animals. The book is organized into six sections dealing with oocyte fertilization in protozoa, invertebrates, teleost fishes, amphibians, birds and mammals. These sections are followed by a summary/concluding chapter that provides a com parative overview of the process of fertilization in these groups of eukaryotes.




Mammalian Development


Book Description

"A subject collection from Cold Spring Harbor perspectives in biology."




Examining the State of the Science of Mammalian Embryo Model Systems


Book Description

Because of the recent advances in embryo modeling techniques, and at the request of the Office of Science Policy in the Office of the Director at the National Institutes of Health, the National Academies of Sciences, Engineering, hosted a 1-day public workshop that would explore the state of the science of mammalian embryo model systems. The workshop, which took place on January 17, 2020, featured a combination of presentations, panels, and general discussions, during which panelists and participants offered a broad range of perspectives. Participants considered whether embryo model systems - especially those that use nonhuman primate cells - can be used to predict the function of systems made with human cells. Presentations provided an overview of the current state of the science of in vitro development of human trophoblast. This publication summarizes the presentation and discussion of the workshop.




Mammalian Sexuality


Book Description

The first detailed account of post-copulatory sexual selection and the evolution of reproduction in mammals.







Dynamics of the Mammalian Sperm Head


Book Description

Mammalian spermatozoa have complex structures. The structure-function relationship of sperm has been studied from various viewpoints. Accumulated evidence has shown that the sperm components undergo sequential changes from the beginning of spermatogenesis to the time of fertilization/embryogenesis. Structural analyses have been performed using various new techniques of light and electron microscopy as well as immunohistochemistry and immunocytochemistry in combination with specific probes such as antibodies against sperm components. Recently developed gene-manipulation techniques have accelerated investigations on the events that govern the relationship between the structure and molecular components of sperm. In addition, animal models with gene manipulations have been shown to exhibit various morphological and functional abnormalities that lead to infertility. In this book, I discuss the events that occur in the normal sperm head and govern the structure-function relationship from the time of spermatogenesis to that of fertilization or egg activation. In this regard, I describe dynamic modifications and maturation events occurring in sperm-head components and compare the outcomes of these events with the outcomes of their failure.




Textbook of Clinical Embryology


Book Description

The success of Assisted Reproductive Technology is critically dependent upon the use of well optimized protocols, based upon sound scientific reasoning, empirical observations and evidence of clinical efficacy. Recently, the treatment of infertility has experienced a revolution, with the routine adoption of increasingly specialized molecular biological techniques and advanced methods for the manipulation of gametes and embryos. This textbook – inspired by the postgraduate degree program at the University of Oxford – guides students through the multidisciplinary syllabus essential to ART laboratory practice, from basic culture techniques and micromanipulation to laboratory management and quality assurance, and from endocrinology to molecular biology and research methods. Written for all levels of IVF practitioners, reproductive biologists and technologists involved in human reproductive science, it can be used as a reference manual for all IVF labs and as a textbook by undergraduates, advanced students, scientists and professionals involved in gamete, embryo or stem cell biology.




Scientific Frontiers in Developmental Toxicology and Risk Assessment


Book Description

Scientific Frontiers in Developmental Toxicology and Risk Assessment reviews advances made during the last 10-15 years in fields such as developmental biology, molecular biology, and genetics. It describes a novel approach for how these advances might be used in combination with existing methodologies to further the understanding of mechanisms of developmental toxicity, to improve the assessment of chemicals for their ability to cause developmental toxicity, and to improve risk assessment for developmental defects. For example, based on the recent advances, even the smallest, simplest laboratory animals such as the fruit fly, roundworm, and zebrafish might be able to serve as developmental toxicological models for human biological systems. Use of such organisms might allow for rapid and inexpensive testing of large numbers of chemicals for their potential to cause developmental toxicity; presently, there are little or no developmental toxicity data available for the majority of natural and manufactured chemicals in use. This new approach to developmental toxicology and risk assessment will require simultaneous research on several fronts by experts from multiple scientific disciplines, including developmental toxicologists, developmental biologists, geneticists, epidemiologists, and biostatisticians.