Activation of Small Molecules


Book Description

The first to combine both the bioinorganic and the organometallic view, this handbook provides all the necessary knowledge in one convenient volume. Alongside a look at CO2 and N2 reduction, the authors discuss O2, NO and N2O binding and reduction, activation of H2 and the oxidation catalysis of O2. Edited by the highly renowned William Tolman, who has won several awards for his research in the field.




Machine Learning in Chemistry


Book Description

Recent advances in machine learning or artificial intelligence for vision and natural language processing that have enabled the development of new technologies such as personal assistants or self-driving cars have brought machine learning and artificial intelligence to the forefront of popular culture. The accumulation of these algorithmic advances along with the increasing availability of large data sets and readily available high performance computing has played an important role in bringing machine learning applications to such a wide range of disciplines. Given the emphasis in the chemical sciences on the relationship between structure and function, whether in biochemistry or in materials chemistry, adoption of machine learning by chemistsderivations where they are important




Pincer Compounds


Book Description

Pincer Compounds: Chemistry and Applications offers valuable state-of-the-art coverage highlighting highly active areas of research—from mechanistic work to synthesis and characterization. The book focuses on small molecule activation chemistry (particularly H2 and hydrogenation), earth abundant metals (such as Fe), actinides, carbene-pincers, chiral catalysis, and alternative solvent usage. The book covers the current state of the field, featuring chapters from renowned contributors, covering four continents and ranging from still-active pioneers to new names emerging as creative strong contributors to this fascinating and promising area. Over a decade since the publication of Morales-Morales and Jensen's The Chemistry of Pincer Compounds (Elsevier 2007), research in this unique area has flourished, finding a plethora of applications in almost every single branch of chemistry—from their traditional application as very robust and active catalysts all the way to potential biological and pharmaceutical applications. - Describes the chemistry and applications of this important class of organometallic and coordination compounds - Includes contributions from global leaders in the field, featuring pioneers in the area as well as emerging experts conducting exciting research on pincer complexes - Highlights areas of promising and active research, including small molecule activation, earth abundant metals, and actinide chemistry




Theoretical and Computational Models for Organic Chemistry


Book Description

The papers in this volume were presented at the NATO Advanced Study Institute held in Porto Novo, Portugal, August 26 - September 8, 1990. The Institute has been able to cover a wide spectrum of the Theoretical and Computational Models for organic molecules and organic reactions, ranging from the ab initio to the more empirical approaches, in the tradition established in the previous Institutes at S. Feliu de Guixols (Spain) and Altinoluk (Turkey). The continuity with this work was achieved by inviting half of the lecturers present in those meetings. But other important subjects were also covered at Porto Novo by new lecturers, both from universities and the industry. Molecular Mechanics, Protein Structure and Unidimensional Models were introduced by the first time. The concept of building on the expertise already acquired and available, both in terms of methods and contents, to develop in new directions, was appreciated by participants and lecturers. The Institute first considered the fundamentals of molecular orbital computations and ab initio methods and the construction of Potential Energy Surfaces. These subjects were further explored in several applications related with optimization of equilibrium geometries and transition structures. Practical examples were studied in Tutorial sessions and solved in the computational projects making use of the Gaussian 88 and Gaussian 90 programs. Empirical models can be complementary to the quantum-mechanical ones in equilibrium geometry optimizations.




Reviews in Computational Chemistry


Book Description

Not only a major reference work for sale to the library market, this series is now receiving an increase in purchases by individuals. This increase is due to the explosive growth in the use of computational chemistry throughout many scientific disciplines As each volume does not follow a singular theme, the table of contents is a vital tool in the defining the areas examined by a volume The series contains updated and comprehensive compendiums of molecular modeling software that list hundreds of programs, services, suppliers, and other information that every chemist will find useful Detailed author and subject indices on each volume help the reader to quickly discover particular topics Uniting the most respected authors in their fields, the series is designed to help the reader stay abreast of the many new developments in computational techniques The chapters are approached in a tutorial manner and wirtten in a non-mathematical style allowing students and researches to access computational methods outside their immediate area of expertise




Frustrated Lewis Pairs I


Book Description

Discovery of Frustrated Lewis Pairs: Intermolecular FLPs for Activation of Small Molecules, by Douglas W. Stephan Intramolecular Frustrated Lewis Pairs: Formation and Chemical Features, by Gerald Kehr, Sina Schwendemann, Gerhard Erker Frustrated Lewis Pair Mediated Hydrogenations, by Douglas W. Stephan, Gerhard Erker Amine-Borane Mediated Metal-Free Hydrogen Activation and Catalytic Hydrogenation, by Victor Sumerin, Konstantin Chernichenko, Felix Schulz, Markku Leskelä, Bernhard Rieger, Timo Repo Hydrogen Activation by Frustrated Lewis Pairs: Insights from Computational Studies, by Tibor András Rokob, Imre Pápai Quantum Chemistry of FLPs and Their Activation of Small Molecules: Methodological Aspects, by Birgitta Schirmer, Stefan Grimme Computational Design of Metal-Free Molecules for Activation of Small Molecules, Hydrogenation, and Hydroamination, by Zhi-Xiang Wang, Lili Zhao, Gang Lu, Haixia Li, Fang Huang Computational Studies of Lewis Acidity and Basicity in Frustrated Lewis Pairs, by Thomas M. Gilbert Solid-State NMR as a Spectroscopic Tool for Characterizing Phosphane - Borane Frustrated Lewis Pairs, by Thomas Wiegand, Hellmut Eckert, Stefan Grimme




Chemical Modelling


Book Description

Chemical modelling covers a wide range of disciplines and this book is the first stop for any materials scientist, biochemist, chemist or molecular physicist wishing to acquaint themselves with major developments in the applications and theory of chemical modelling. Containing both comprehensive and critical reviews, it is a convenient reference to the current literature. Coverage includes, but is not limited to, boron clusters, molecular modeling of inclusion complexes, modelling of circular dichroism for DNA and proteins, and the interface effect of nanocomposites as electrode materials for Li/Na ion batteries.







C-H Activation for Asymmetric Synthesis


Book Description

Provides, in one handbook, comprehensive coverage of one of the hottest topics in stereoselective chemistry Written by leading international authors in the field, this book introduces readers to C-H activation in asymmetric synthesis along with all of its facets. It presents stereoselective C-H functionalization with a broad coverage, from outer-sphere to inner-sphere C-H bond activation, and from the control of olefin geometry to the induction of point, planar and axial chirality. Moreover, methods wherein asymmetry is introduced either during the C-H activation or in a different elementary step are discussed. Presented in two parts?asymmetric activation of C(sp3)-H bonds and stereoselective synthesis implying activation of C(sp2)-H bonds?CH-Activation for Asymmetric Synthesis showcases the diversity of stereogenic elements, which can now be constructed by C-H activation methods. Chapters in Part 1 cover: C(sp3)-H bond insertion by metal carbenoids and nitrenoids; stereoselective C-C bond and C-N bond forming reactions through C(sp3)?H bond insertion of metal nitrenoids; enantioselective intra- and intermolecular couplings; and more. Part 2 looks at: C-H activation involved in stereodiscriminant step; planar chirality; diastereoselective formation of alkenes through C(sp2)?H bond activation; amongst other methods. -Covers one of the most rapidly developing fields in organic synthesis and catalysis -Clearly structured in two parts (activation of sp3- and activation of sp2-H bonds) -Edited by two leading experts in C-H activation in asymmetric synthesis CH-Activation for Asymmetric Synthesis will be of high interest to chemists in academia, as well as those in the pharmaceutical and agrochemical industry.




Relativistic Theory of Atoms and Molecules III


Book Description

Relativistic effects are of major importance for understanding the properties of heavier atoms and molecules. Volumes I-III of Relativistic Theory of Atoms and Molecules constitute the only available bibliography on related calculations. In Volume III, 3792 new references covering 1993-1999 are added to the database. The material is characterized by an analysis of the respective papers. The volume gives the user a comprehensive bibliography on relativistic atomic and molecular calculations, including studies on the Dirac equation and related solid-state work.