A Course in Mathematics for Students of Physics: Volume 2


Book Description

This textbook, available in two volumes, has been developed from a course taught at Harvard over the last decade. The course covers principally the theory and physical applications of linear algebra and of the calculus of several variables, particularly the exterior calculus. The authors adopt the 'spiral method' of teaching, covering the same topic several times at increasing levels of sophistication and range of application. Thus the reader develops a deep, intuitive understanding of the subject as a whole, and an appreciation of the natural progression of ideas. Topics covered include many items previously dealt with at a much more advanced level, such as algebraic topology (introduced via the analysis of electrical networks), exterior calculus, Lie derivatives, and star operators (which are applied to Maxwell's equations and optics). This then is a text which breaks new ground in presenting and applying sophisticated mathematics in an elementary setting. Any student, interpreted in the widest sense, with an interest in physics and mathematics, will gain from its study.




A Course in Mathematics for Students of Physics: Volume 1


Book Description

This textbook, available in two volumes, has been developed from a course taught at Harvard over the last decade. The course covers principally the theory and physical applications of linear algebra and of the calculus of several variables, particularly the exterior calculus. The authors adopt the 'spiral method' of teaching, covering the same topic several times at increasing levels of sophistication and range of application. Thus the reader develops a deep, intuitive understanding of the subject as a whole, and an appreciation of the natural progression of ideas. Topics covered include many items previously dealt with at a much more advanced level, such as algebraic topology (introduced via the analysis of electrical networks), exterior calculus, Lie derivatives, and star operators (which are applied to Maxwell's equations and optics). This then is a text which breaks new ground in presenting and applying sophisticated mathematics in an elementary setting. Any student, interpreted in the widest sense, with an interest in physics and mathematics, will gain from its study.




University Physics


Book Description

University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves




Curvature in Mathematics and Physics


Book Description

Expert treatment introduces semi-Riemannian geometry and its principal physical application, Einstein's theory of general relativity, using the Cartan exterior calculus as a principal tool. Prerequisites include linear algebra and advanced calculus. 2012 edition.




Mathematical Physics


Book Description

For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.




Physics for Mathematicians


Book Description




Mathematics of Classical and Quantum Physics


Book Description

Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.




Mathematics for Physics


Book Description

An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at www.cambridge.org/9780521854030.




A Course in Mathematics for Students of Physics: Volume 1


Book Description

This textbook, available in two volumes, has been developed from a course taught at Harvard over the last decade. The course covers principally the theory and physical applications of linear algebra and of the calculus of several variables, particularly the exterior calculus. The authors adopt the 'spiral method' of teaching, covering the same topic several times at increasing levels of sophistication and range of application. Thus the reader develops a deep, intuitive understanding of the subject as a whole, and an appreciation of the natural progression of ideas. Topics covered include many items previously dealt with at a much more advanced level, such as algebraic topology (introduced via the analysis of electrical networks), exterior calculus, Lie derivatives, and star operators (which are applied to Maxwell's equations and optics). This then is a text which breaks new ground in presenting and applying sophisticated mathematics in an elementary setting. Any student, interpreted in the widest sense, with an interest in physics and mathematics, will gain from its study.




Basic Training in Mathematics


Book Description

Based on course material used by the author at Yale University, this practical text addresses the widening gap found between the mathematics required for upper-level courses in the physical sciences and the knowledge of incoming students. This superb book offers students an excellent opportunity to strengthen their mathematical skills by solving various problems in differential calculus. By covering material in its simplest form, students can look forward to a smooth entry into any course in the physical sciences.




Recent Books