A Dictionary of Real Numbers


Book Description

How do we recognize that the number . 93371663 . . . is actually 2 IoglQ(e + 7r)/2 ? Gauss observed that the number 1. 85407467 . . . is (essentially) a rational value of an elliptic integral-an observation that was critical in the development of nineteenth century analysis. How do we decide that such a number is actually a special value of a familiar function without the tools Gauss had at his disposal, which were, presumably, phenomenal insight and a prodigious memory? Part of the answer, we hope, lies in this volume. This book is structured like a reverse telephone book, or more accurately, like a reverse handbook of special function values. It is a list of just over 100,000 eight-digit real numbers in the interval [0,1) that arise as the first eight digits of special values of familiar functions. It is designed for people, like ourselves, who encounter various numbers computationally and want to know if these numbers have some simple form. This is not a particularly well-defined endeavor-every eight-digit number is rational and this is not interesting. However, the chances of an eight digit number agreeing with a small rational, say with numerator and denominator less than twenty-five, is small. Thus the list is comprised primarily of special function evaluations at various algebraic and simple transcendental values. The exact numbers included are described below. Each entry consists of the first eight digits after the decimal point of the number in question.




Math Dictionary With Solutions


Book Description

This book is also a valuable resource for graduate students and academicians in the social sciences who are coping with the rapidly increasing emphasis on quantitative methods that, to be understood, require more familiarity with mathematical underpinnings than are typically a part of the academic background of many individuals in these fields."-Dennis W. Roncek, University of Nebraska, Omaha. "This is a highly readable, accessible, reference source, the product of a huge amount of labor, obviously."-Hoben Thomas, The Pennsylvania State University. Have you ever suddenly become stuck and not remembered how to divide a fraction or turn a fraction into a percentage? Or, have you taken a graduate statistics course and discovered that you can't remember any of the terminology or techniques from a calculus course you took years ago? If either of these scenarios sounds familiar, then this book will provide you with the quick and easy review that you need.




The Concise Oxford Dictionary of Mathematics


Book Description

Authoritative and reliable, this A-Z provides jargon-free definitions for even the most technical mathematical terms. With over 3,000 entries ranging from Achilles paradox to zero matrix, it covers all commonly encountered terms and concepts from pure and applied mathematics and statistics, for example, linear algebra, optimisation, nonlinear equations, and differential equations. In addition, there are entries on major mathematicians and on topics of more general interest, such as fractals, game theory, and chaos. Using graphs, diagrams, and charts to render definitions as comprehensible as possible, entries are clear and accessible. Almost 200 new entries have been added to this edition, including terms such as arrow paradox, nested set, and symbolic logic. Useful appendices follow the A-Z dictionary and include lists of Nobel Prize winners and Fields' medallists, Greek letters, formulae, and tables of inequalities, moments of inertia, Roman numerals, a geometry summary, additional trigonometric values of special angles, and many more. This edition contains recommended web links, which are accessible and kept up to date via the Dictionary of Mathematics companion website. Fully revised and updated in line with curriculum and degree requirements, this dictionary is indispensable for students and teachers of mathematics, and for anyone encountering mathematics in the workplace.




The Story Of Numbers


Book Description

'… this could make an ideal end-of-year prize for a high-school student who is fascinated by all aspects of number. The subsections provide ideas and opportunities for mathematical exploration. This book might also be deemed a suitable resource for first-year undergraduates in that, via independent study, it would allow such students to broaden their knowledge of various number-theoretic ideas. I would recommend it for the purposes given above.'The Mathematical GazetteThis book is more than a mathematics textbook. It discusses various kinds of numbers and curious interconnections between them. Without getting into hardcore and difficult mathematical technicalities, the book lucidly introduces all kinds of numbers that mathematicians have created. Interesting anecdotes involving great mathematicians and their marvelous creations are included. The reader will get a glimpse of the thought process behind the invention of new mathematics. Starting from natural numbers, the book discusses integers, real numbers, imaginary and complex numbers and some special numbers like quaternions, dual numbers and p-adic numbers.Real numbers include rational, irrational and transcendental numbers. Iterations on real numbers are shown to throw up some unexpected behavior, which has given rise to the new science of 'Chaos'. Special numbers like e, pi, golden ratio, Euler's constant, Gauss's constant, amongst others, are discussed in great detail.The origin of imaginary numbers and the use of complex numbers constitute the next topic. It is shown why modern mathematics cannot even be imagined without imaginary numbers. Iterations on complex numbers are shown to generate a new mathematical object called 'Fractal', which is ubiquitous in nature. Finally, some very special numbers, not mentioned in the usual textbooks, and their applications, are introduced at an elementary level.The level of mathematics discussed in this book is easily accessible to young adults interested in mathematics, high school students, and adults having some interest in basic mathematics. The book concentrates more on the story than on rigorous mathematics.




The Encyclopædia Britannica


Book Description




The Encyclopaedia Britannica


Book Description

This eleventh edition was developed during the encyclopaedia's transition from a British to an American publication. Some of its articles were written by the best-known scholars of the time and it is considered to be a landmark encyclopaedia for scholarship and literary style.




The Real Numbers and Real Analysis


Book Description

This text is a rigorous, detailed introduction to real analysis that presents the fundamentals with clear exposition and carefully written definitions, theorems, and proofs. It is organized in a distinctive, flexible way that would make it equally appropriate to undergraduate mathematics majors who want to continue in mathematics, and to future mathematics teachers who want to understand the theory behind calculus. The Real Numbers and Real Analysis will serve as an excellent one-semester text for undergraduates majoring in mathematics, and for students in mathematics education who want a thorough understanding of the theory behind the real number system and calculus.







Real Analysis (Classic Version)


Book Description

This text is designed for graduate-level courses in real analysis. Real Analysis, 4th Edition, covers the basic material that every graduate student should know in the classical theory of functions of a real variable, measure and integration theory, and some of the more important and elementary topics in general topology and normed linear space theory. This text assumes a general background in undergraduate mathematics and familiarity with the material covered in an undergraduate course on the fundamental concepts of analysis.




The Encyclopaedia Britannica


Book Description