A Laboratory Course in Nanoscience and Nanotechnology


Book Description

Although there are many theoretical nanotechnology and nanoscience textbooks available to students, there are relatively few practical laboratory-based books. Filling this need, A Laboratory Course in Nanoscience and Nanotechnology presents a hands-on approach to key synthesis techniques and processes currently used in nanotechnology and nanoscience. Written by a pioneer in nanotechnology, this practical manual shows undergraduate students how to synthesize their own nanometer-scale materials and structures and then analyze their results using advanced characterization techniques. Through a series of well-designed, classroom-tested lab experiments, students directly experience some of the magic of the nano world. The lab exercises give students hands-on skills to complement their theoretical studies. Moreover, the material in the book underscores the truly interdisciplinary nature of nanoscience, preparing students from physics, chemistry, engineering, and biology for work in nanoscience- and nanotechnology-related industries. After introducing examples of nanometer-scale materials and structures found in nature, the book presents a range of nanometer-scale materials and the synthesis processes used to produce them. It then covers advanced characterization techniques for examining nanometer-scale materials and structures. It also addresses lab safety and the identification of potential hazards in the lab before explaining how to prepare a scientific report and present research results. In addition, the author discusses typical projects undertaken in nanotechnology labs, such as the analysis of samples using scanning electron microscopy and atomic force microscopy. The book concludes with a set of projects that students can do while collaborating with a mentor or supervisor.




A Laboratory Course in Nanoscience and Nanotechnology


Book Description

Although there are many theoretical nanotechnology and nanoscience textbooks available to students, there are relatively few practical laboratory-based books. Filling this need, A Laboratory Course in Nanoscience and Nanotechnology presents a hands-on approach to key synthesis techniques and processes currently used in nanotechnology and nanoscienc




Introduction to Nanoscience and Nanotechnology


Book Description

The maturation of nanotechnology has revealed it to be a unique and distinct discipline rather than a specialization within a larger field. Its textbook cannot afford to be a chemistry, physics, or engineering text focused on nano. It must be an integrated, multidisciplinary, and specifically nano textbook. The archetype of the modern nano textbook




Foundations for Nanoscience and Nanotechnology


Book Description

Do you ever wonder why size is so important at the scale of nanosystems? Do you want to understand the fundamental principles that govern the properties of nanomaterials? Do you want to establish a foundation for working in the field of nanoscience and nanotechnology? Then this book is written with you in mind. Foundations for Nanoscience and Nanotechnology provides some of the physical chemistry needed to understand why properties of small systems differ both from their constituent molecular entities and from the corresponding bulk matter. This is not a book about nanoscience and nanotechnology, but rather an exposition of basic knowledge required to understand these fields. The collection of topics makes it unique, and these topics include: The concept of quantum confinement and its consequences for electronic behaviour (Part II) The importance of surface thermodynamics for activity and interactions of nanoscale systems (Part III) The need to consider fluctuations as well as mean properties in small systems (Part IV) The interaction of light with matter and specific applications of spectroscopy and microscopy (Part V) This book is written for senior undergraduates or junior graduate students in science or engineering disciplines who wish to learn about or work in the areas of nanoscience and nanotechnology, but who do not have the requisite background in chemistry or physics. It may also be useful as a refresher or summary text for chemistry and physics students since the material is focused on those aspects of quantum mechanics, thermodynamics, and statistical mechanics that specifically relate to the size of objects.




Textbook of Nanoscience and Nanotechnology


Book Description

This book is meant to serve as a textbook for beginners in the field of nanoscience and nanotechnology. It can also be used as additional reading in this multifaceted area. It covers the entire spectrum of nanoscience and technology: introduction, terminology, historical perspectives of this domain of science, unique and widely differing properties, advances in the various synthesis, consolidation and characterization techniques, applications of nanoscience and technology and emerging materials and technologies.




An Introduction to Nanoscience and Nanotechnology


Book Description

"Part of this book adapted from "Introduction aux nanosciences et aux nanotechnologies" published in France by Hermes Science/Lavoisier in 2006."




Essentials in Nanoscience and Nanotechnology


Book Description

This book describes various aspects of nanoscience and nanotechnology. It begins with an introduction to nanoscience and nanotechnology and includes a historical prospective, nanotechnology working in nature, man -made nanomaterial and impact of nanotechnology illustrated with examples. It goes on to describes general synthetic approaches and strategies and also deals with the characterization of nanomaterial using modern tools and techniques to give basic understanding to those interested in learning this emerging area. It then deals with different kinds of nanomaterial such as inorganics, carbon based-, nanocomposites and self-assembled/supramolecular nano structures in terms of their varieties, synthesis, properties etc. In addition, it contains chapters devoted to unique properties with mathematical treatment wherever applicable and the novel applications dealing with information technology, pollution control (environment, water), energy, nanomedicine, healthcare, consumer goods etc.




Nanomaterials and Environmental Biotechnology


Book Description

Nanotechnology is considered as one of the emerging fields of science. It has applications in different biological and technological fields which deal with the science of materials at nanoscale (10-9). On the other hand, biotechnology is another field that deals with contemporary challenges. Nanobiotechnology fills the gap between these two fields. It merges physical, chemical, and biological principles in a single realm. This combination opens up new possibilities. At nanoscale dimensions, it creates precise nanocrystals and nanoshells. Integrated nanomaterials are used with modified surface layers for compatibility with living systems, improved dissolution in water, or biorecognition leading to enhanced end results in biotechnological systems. These nanoparticles can also be hybridized with additional biocompatible substances in order to amend their qualities to inculcate novel utilities. Nanobiotechnology is used in bioconjugate chemistry by coalescing up the functionality of non-organically obtained molecular components and biological molecules in order to veil the immunogenic moieties for targeted drug delivery, bioimaging and biosensing. This book blends the science of biology, medicine, bioinorganic chemistry, bioorganic chemistry, material and physical sciences, biomedical engineering, electrical, mechanical, and chemical science to present a comprehensive range of advancements. The development of nano-based materials has made for a greater understanding of their characterization, using techniques such as transmission electron microscope, FTIR, X-ray diffraction, scanning electron microscope EDX, and so on. This volume also highlights uses in environmental remediation, environmental biosensors and environmental protection. It also emphasizes the significance of nanobiotechnology to a series of medical applications viz., diagnostics, and therapeutics stem cell technology, tissue engineering enzyme engineering, drug development and delivery. In addition this book also offers a distinctive understanding of nanobiotechnology from researchers and educators and gives a comprehensive facility for future developments and current applications of nanobiotechnology.




Harnessing Synthetic Nanotechnology-Based Methodologies for Sustainable Green Applications


Book Description

Decision support systems are developed for integrated pest and disease management and nutrition management using open-source technologies as Java, Android and low-cost hardware devices like Arduino micro controller. This text discusses the techniques to convert agricultural knowledge in the context of ontology and assist grape growers by providing this knowledge through decision support system. The key features of the book are as follows: It presents the design and development of an ontology-based decision support system for integrated crop management. It discusses the techniques to convert agricultural knowledge in text to ontology. It focuses on an extensive study of various e-Negotiation protocols for automated negotiations. It provides an architecture for predicting the opponent’s behavior and various factors which affect the process of negotiation. The text is primarily written for graduate students, professionals and academic researchers working in the fields of computer science and engineering, agricultural science and information technology. Dr Gerrard E.J. Poinern holds a Ph.D. in Physics from Murdoch University, Western Australia and a Double Major in Physics and Chemistry. Currently he is is an Associate Professor in Physics and Nanotechnology in the School of Engineering and Information Technology at Murdoch University. He is the director of Murdoch Applied Innovation and Nanotechnology Research Group, Murdoch University. In 2003, he discovered and pioneered the use of an inorganic nanomembrane for potential skin tissue engineering applications. He is the recipient of a Gates Foundation Global Health Grand Challenge Exploration Award for his work in the development of biosynthetic materials and their subsequent application in the manufacture of biomedical devices. He is also the author of the 2014 experimental textbook "A Laboratory Course in Nanoscience and Nanotechnology". Associate Professor Suraj K Tripathy is Associate Dean of the School of Chemical Technology at Kalinga Institute of Industrial Technology, Bhubaneswar, India. He currently leads the Chemical & Bioprocess Engineering Lab (CBEL) at KIIT which focuses on achieving sustainability in materials processing and utilization. CBEL explores opportunities in valorization of waste materials (secondary resources) and investigate their applications in catalysis, water treatment, and biomedical systems. CBEL also works closely with industries to develop suitable waste management and resource recycling strategies to optimize the potential of circular economy model. Dr. Derek Fawcett is the Defence Science Centre research fellow at Murdoch University, Australia. His research involves the investigation and development of new advanced materials and their use in innovative engineering systems. He has published over seventy peer-reviewed research papers in international journals.




Nanotechnology in Sustainable Agriculture


Book Description

Nanotechnology in Sustainable Agriculture presents applications of nanobiotechnology for eco-friendly agriculture practices. Implementing sustainable agriculture techniques is a crucial component in meeting projected global food demands while minimising toxic waste in the environment. Nano-technological tools – including nanoparticles, nanocapsules, nanotubes and nanomolecules – offer sustainable options to modernise agriculture systems. Written by nanotechnology experts, this book outlines how nano-formulations can improve yield without reliance on chemecial pesticides and reduce nutrient losses in fertilization. It reveals how nanotools are used for rapid disease diagnostics, in treating plant diseases and enhancing the capacity for plants to absorb nutrients. Features: Combines nanotechnology and agronomy presenting applications for improving plant performance and yields. Reveals nanotechnology-based products used for the soil and plant health management which mitigate climate change. Discusses roles of microbial endophytes, heavy metal nanoparticles and environment health, nano-nutrients, phytochemicals, green bioengineering and plant health. This book appeals to professionals working in the agriculture and food industry, as well as agricultural scientists and researchers in nanotechnology and agronomy.