Novel Approaches Towards Wastewater Treatment and Resource Recovery Technologies


Book Description

Novel Approaches towards Wastewater Treatment and Resource Recovery Technologies discusses various cost-efficient aspects of wastewater treatment along with resource recovery options. The book covers biological wastewater treatment, the application of membranes and their modifications, advanced oxidation techniques, and the application of nanoparticles for the enhancement of performance as well as various integrated technologies for resource recovery along with pilot scale potentials. The book covers both domestic and industrial wastewaters and provides resources for sustainable solutions. It provides the basic fundamentals and recent updated data. Case studies are included to give the glimpse of the real-world application. Similarly, pilot scale studies are considered for real life implementation of the concept. - Covers sustainable, bio-electrochemical recovery of nutrients and other value-added products from wastewater - Discusses advanced oxidation processes and membranes processes enabling treatment of complex wastewaters for final reuse - Treats domestic/industrial operation and scale-up challenges of wastewater treatment for resource recovery - Includes case studies and pilot scale studies for covering and providing all data and information to the readers in a systematic manner for their easy implementation




Computational Photocatalysis


Book Description

Photochemical reactions and the underlying photophysical principles play key roles in the rational design of efficient systems for energy conversion and storage. This volume on interfaces contains fundamental theory, computational models, and applications for real materials. Edited by experts with a deep knowledge of the community, the volume will be useful to computational chemists, materials scientists, physical chemists, and especially those working in energy and nanomaterials.




Heterogeneous Photocatalysis


Book Description

The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. The chapter "Mechanochemical Forces as a Synthetic Tool for Zero and One-Dimensional Titanium Oxide-Based Nano-photocatalysts" is available open access under a CC BY 4.0 License via link.springer.com.




Photocatalysts in Advanced Oxidation Processes for Wastewater Treatment


Book Description

Photocatalysts in Advanced Oxidation Processes for Wastewater Treatment comprehensively covers a range of topics aiming to promote the implementation of photocatalysis at large scale through provision of facile and green methods for catalysts synthesis and elucidation of pollutants degradation mechanisms. This book is divided into two main parts namely “Synthesis of effective photocatalysts” (Part I) and “Mechanisms of the photocatalytic degradation of various pollutants” (Part II). The first part focuses on the exploration of various strategies to synthesize sustainable and effective photocatalysts. The second part of the book provides an insights into the photocatalytic degradation mechanisms and pathways under ultraviolet and visible light irradiation, as well as the challenges faced by this technology and its future prospects.




Novel Approaches to Design Eco-friendly Materials Based on Natural Nanomaterials


Book Description

Naturally available nanomaterials or those synthesized from natural resources become “new favorite” of material world due to their advantages of low cost, safety and environmental friendliness. They are honored as future “green materials” and widely used in fabricating various functional materials. Naturally available materials have been playing an increasingly important role in many fields such as environmental remediation, separation, catalysis, and polymer composites. This book collects latest research results on the new composites for environmental application, focusing on the study of fabricating functional composites using natural clay minerals. Naturally available materials or solid waste or minerals are good precursors for producing adsorbents. Composites based on sub-bituminous coal, lignite, and a blend of coal and Irvingia gabonensis seed shells, the Cl-type Mg-Al hydrotalcite (Cl-LDH), the hydroxyapatite decorated with carbon nanotube and Zirconium (Zr)-containing silica residue purification (ZSR-P) were proved to have good adsorption capability to Cd(II) and Pb(II) ions, antibiotic molecules, Cd(II), and fluoride, respectively. The nano-Mg(OH)2 loaded carbon cloth showed good separation effect for Eu(III), and the sodium-modified clinoptilolite showed good separation effect for CH4/N2 from coal bed gas. Also, natural nanoclay is an effective precursor for the preparation of inorganic-inorganic or organic-inorganic nano-hybrid materials. Using nano-kaolinite as a carrier, the inorganic-inorganic hybrid cobalt blue pigment with excellent color and stability can be obtained by surface co-precipitation and in-situ calcination crystallization process. The intercalation of 7-amino-4-methylcoumarin (AMC) molecules into the interlayer space of montmorillonite (MMT) can effectively inhibit fluorescence quenching and improve the detection effectiveness of Cr(VI) in water. The interlayer space of kaolinite can accommodate organic molecules to form an organic-inorganic hybrid composite. Natural clay minerals are also effective carriers for catalysts. Er3+:CeO2/palygorskite nanocomposites prepared by a facile precipitation method showed excellent desulfurization rate under visible light irradiation. The zero-valent iron-loaded nanoclays composite catalysts can degrade efficiently Rhodamine 6G (Rh 6G) under microwave irradiation. In addition, the polymer composites have been developed using natural palygorskite, montmorillonite nanosheets or silica nanoparticles as inorganic components, which are potential to be used in many fields such as packing, biomedicine, or rubber. With the increasing attention to clay minerals, research methods for the microstructure of clay minerals continue to receive attention. It is no doubt that natural materials have got a booming attention from researchers in mineralogy, materials science, chemistry, energy, biomedicine and other fields due to their advantages. However, there is still a long way to go to substitute traditional synthetic nanomaterials with natural ones, and there are still theoretical and technological limitation in the design and synthesis of new materials from natural materials. Related theoretical research and technological development require continuous exploration by researchers. This book has collected some recent advances in related research, and hopes to play a role in attracting more attention to the construction of functional materials from natural raw materials. It is also believed that through the unremitting efforts of all researchers, the dream of green materials and green preparation processes can be realized.




Transformation Products of Emerging Contaminants in the Environment


Book Description

Over the last 15 years, the focus of chemical pollution has shifted from conventional pollutants to so-called “emerging” or “new” unregulated contaminants. These include pharmaceuticals and personal care products, hormones, UV filters, perfluorinated compounds, poylybrominated flame retardants (BFRs), pesticides, plasticizers, artificial sweeteners, illicit drugs, and endocrine disruptor compounds (EDCs). Despite the increasing number of published studies covering emerging contaminants, we know almost nothing about the effects of their transformation products and/or metabolites. This two-volume set provides a unique collection of research on transformation products, their occurrence, fate and risks in the environment. It contains 32 chapters, organised into 7 parts, each with a distinct focus: • General Considerations • Transformation Processes and Treatment Strategies • Analytical Strategies • Occurrence, Fate and Effects in the Environment • Global Speciality and Environmental Status • Risk Assessment, Management and Regulatory Framework • Outlook Transformation Products of Emerging Contaminants in the Environment is a valuable resource for researchers and industry professionals in environmental chemistry, analytical chemistry, ecotoxicology, environmental sciences, and hydrology, as well as environmental consultants and regulatory bodies.




Innovative and Hybrid Advanced Oxidation Processes for Water Treatment


Book Description

Innovative and Hybrid Advanced Oxidation Processes for Water Treatment presents a panoply of topics, from the fundamental aspects and mechanistic modeling to upscaled experiments, that relate recent innovation and hybridization of AOPs to improving the efficiency of processes used to remove recalcitrant and emerging contaminants from water. The book applies the results of this novel approach to practical applications and technology assessments, covering the latest innovations, trends and concerns, as well as practical challenges and solutions in the field of AOPs in water treatment. The book pays special attention to reactive species production, reaction kinetics, mechanistic modeling, energy production, and degradation enhancement. - Provides a strategy for developing new AOPs that utilize multiple free radicals and offer high contaminant removal potential in a short reaction time - Provides a comprehensive approach to the effectiveness of AOPs in treating pollutants, supported by experiments and modeling - Defines energy efficiency metrics for innovative AOPs used in the production of electrical energy and hydrogen




Reaction Kinetics and the Development and Operation of Catalytic Processes


Book Description

Reaction Kinetics and the Development and Operation of Catalytic Processes is a trendsetter. The Keynote Lectures have been authored by top scientists and cover a broad range of topics like fundamental aspects of surface chemistry, in particular dynamics and spillover, the modeling of reaction mechanisms, with special focus on the importance of transient experimentation and the application of kinetics in reactor design. Fundamental and applied kinetic studies are well represented. More than half of these deal with transient kinetics, a new trend made possible by recent sophisticated experimental equipment and the awareness that transient experimentation provides more information and insight into the microphenomena occurring on the catalyst surface than steady state techniques. The trend is not limited to purely kinetic studies since the great majority of the papers dealing with reactors also focus on transients and even deliberate transient operation. It is to be expected that this trend will continue and amplify as the community becomes more aware of the predictive potential of fundamental kinetics when combined with detailed realistic modeling of the reactor operation.




Carbon Nanotubes and Nanoparticles


Book Description

This new volume looks at significant new research, methodologies, and applications in the fields of carbon nanotubes and nanoparticles. It explores a variety of new developments in advanced carbon nanotubes and nanoparticles along with the tools to characterize and predict their properties and behavior. It introduces and reviews methods that are most frequently encountered in sophisticated nano-scaled materials domains, and helps to bridge the gap between classical analysis and modern real-life applications. A diverse array of topics in the field is addressed that provides many practical insights into nanocomposites and nanomaterials sciences.




Membrane Biological Reactors: Theory, Modeling, Design, Management and Applications to Wastewater Reuse - Second Edition


Book Description

The MBR market continues to experience a massive growth. The best practice in the field is constantly changing and unique quality requirements and management issues are regularly emerging. The second edition of Membrane Biological Reactors: Theory, Modeling, Design, Management and Applications to Wastewater Reuse comprehensively covers the salient features and emerging issues associated with the MBR technology. The book provides thorough coverage starting from biological aspects and fundamentals of membranes, via modeling and design concepts, to practitioners’ perspective and good application examples. In the second edition, the chapters have been updated to cover the recently emerged issues. Particularly, the book presents the current status of the technology including market drivers/ restraints and development trend. Process fundamentals (both the biological and membrane components) have received in-depth coverage in the new edition. A new chapter has been added to provide a stronger focus on reuse applications in general and the decisive role of MBR in the entire reuse chain. The second edition also comes with a new chapter containing practical design problems to complement the concepts communicated throughout the book. Other distinguishing features of the new edition are coverage of novel developments and hybrid processes for specialised wastewaters, energy efficiency and sustainability of the process, aspects of MBR process automation and recent material on case studies. The new edition is a valuable reference to the academic and professional community and suitable for undergraduate and postgraduate teaching in Environmental Engineering, Chemical Engineering and Biotechnology.