A Practical Guide to Membrane Protein Purification


Book Description

A Practical Guide to Membrane Protein Purification is written especially for researchers who have some familarity with separation of water-soluble proteins, but who may not be aware of the pitfalls they face with membrane proteins. This guide presents techniques in a concise form, emphasizing the aspects unique to membrane proteins. The book explains the principles of the methods, permitting researchers and students new to this area to adapt these techniques to their particular needs. The second volume in the series, this book is an essential manual for investigations of structure and function of native membrane proteins, as well as for purification of these proteins for immunization and protein sequencing. Separation, Detection, and Characterization of Biological Macromolecules is a new series of laboratory guides. Each volume focuses on a topic of central interest to scientists and students in biomedical and biological research. Introductory chapters are followed by clear, step-by-step protocols that present principles and practice. These concise manuals are designed for optimal understanding of methods as well as for practical benchtop use. - Provides general guidelines and strategies for isolation of membrane proteins - Describes detailed practical procedures that have been the widest applications, and lowest specialized equipment needs - Gives special emphasis to new native and denaturing electrophoresis techniques - Explains modifications of techniques used for water-soluble proteins




Membrane Protein Purification and Crystallization


Book Description

This second edition of Membrane Protein Purification and Crystallization, A Practical Guide is written for bench scientists working in the fields of biochemistry, biology, and proteomic research. This guide presents isolation and crystallization techniques in a concise form, emphasizing the critical aspects unique to membrane proteins. It explains the principles of the methods and provides protocols of general use, permitting researchers and students new to this area to adapt these techniques to their particular needs. This edition is not only an update but is comprised mainly of new contributions. It is the first monograph compiling the essential approaches for membrane protein crystallization, and emphasizes recent progress in production and purification of recombinant membrane proteins. - Provides general guidelines and strategies for isolation and crystallization of membrane proteins - Gives detailed protocols that have wide application, and low specialized equipment needs - Emphasizes recent progress in production and purification of recombinant membrane proteins, especially of histidine-tagged and other affinity-epitope-tagged proteins - Summarizes recent developments of Blue-Native PAGE, a high resolution separation technique, which is independent of the use of recombinant techniques, and is especially suited for proteomic analyses of membrane protein complexes - Gives detailed protocols for membrane protein crystallization, and describes the production and use of antibody fragments for high resolution crystallization - Presents a comprehensive guide to 2D-crystallization of membrane proteins




Guide to Protein Purification


Book Description

Guide to Protein Purification, Second Edition provides a complete update to existing methods in the field, reflecting the enormous advances made in the last two decades. In particular, proteomics, mass spectrometry, and DNA technology have revolutionized the field since the first edition's publication but through all of the advancements, the purification of proteins is still an indispensable first step in understanding their function. This volume examines the most reliable, robust methods for researchers in biochemistry, molecular and cell biology, genetics, pharmacology and biotechnology and sets a standard for best practices in the field. It relates how these traditional and new cutting-edge methods connect to the explosive advancements in the field. This "Guide to" gives imminently practical advice to avoid costly mistakes in choosing a method and brings in perspective from the premier researchers while presents a comprehensive overview of the field today. - Gathers top global authors from industry, medicine, and research fields across a wide variety of disciplines, including biochemistry, genetics, oncology, pharmacology, dermatology and immunology - Assembles chapters on both common and less common relevant techniques - Provides robust methods as well as an analysis of the advancements in the field that, for an individual investigator, can be a demanding and time-consuming process




Structure and Function of Membrane Proteins


Book Description

This book examines detailed experimental and computational approaches for the analysis of many aspects vital to the understanding of membrane protein structure and function. Readers will receive guidance on the selection and use of methods for over-expression and purification, tools to characterize membrane proteins within different phospholipid bilayers, direction on functional studies, and approaches to determine the structures of membrane proteins. Detailed experimental steps for specific membrane proteins with critical notes allow the protocols to be modified to different systems. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of practical information and implementation advice that leads to excellent, reproducible results. Authoritative and up-to-date, Structure and Function Studies of Membrane Proteins serves as an ideal guide for biologists, biochemists, and biophysicists striving to further understand these essential proteins and their many biological roles.







Handbook of Industrial Membranes


Book Description

This manual contains necessary and useful information and data in an easily accessible format relating to the use of membranes. Membranes are among the most important engineering components in use today, and each year more and more effective uses for membrane technologies are found - for example: water purification, industrial effluent treatment, solvent dehydration by per-vaporation, recovery of volatile organic compounds, protein recovery, bioseparations and many others.The pace of change in the membrane industry has been accelerating rapidly in recent years, occasioned in part by the demand of end-users, but also as a result of the investment in R&D by manufacturers. To reflect these changes the author has obtained the latest information from some of the leading suppliers in the business. In one complete volume this unique handbook gives practical guidance to using selected membrane processes in individual industries while also providing a useful guide to equipment selection and usage.




Guide to Protein Purification


Book Description

Guide to Protein Purification , designed to serve the needs of the student, experienced researcher and newcomer to the field, is a comprehensive manual that provides all the up-to-date procedures necessary for purifying, characterizing, and handling proteins and enzymes in one source. Key Features* Detailed procedures newly written for this volume* Extensive practical information* Rationale and strategies for protein and enzyme purification* Personal perspectives on enzyme purification by eminent researchersAmong the Topics Covered* General methods for handling proteins and enzymes * Extraction, subcellular fractionation, and solubilization procedures * Comprehensive purification techniques * Specialized purification procedures * Protein characterization * Immunological procedures * Computer analysis of protein structure.




Protein Liquid Chromatography


Book Description

Protein Liquid Chromatography is a handbook-style guide to liquid chromatography as a tool for isolating and purifying proteins, consisting of 25 individual chapters divided into three parts: Part A covers commonly-used, classic modes of chromatography such as ion-exchange, size-exclusion, and reversed-phase; Part B deals with various target protein classes such as membrane proteins, recombinant proteins, and glycoproteins; and Part C looks at various miscellaneous related topics, including coupling reaction, buffer solution additives, and software. The text as a whole can be viewed as a systematic survey of available methods and how best to use them, but also attempts to provide an exhaustive coverage of each facet. How to solve a specific problem using a chosen method is the overall essence of the volume. The principle philosophy of this compilation is that practical application is everything; therefore, both classical and modern methods are presented in detail, with examples involving conventional, medium- and high-pressure techniques. Over-exposure to history, concept, and theory has deliberately been avoided. The reader will find a wealth of tips and tricks from users for users, including advice on the advantages and disadvantages of each method. Easy-to-read sections on "Getting started now" and "Where to go from here" attempt to provide hands-on, fool-proof detailed practical procedures with complete and even standard model runs for any scientist or technician at work in this area.




The Next Generation in Membrane Protein Structure Determination


Book Description

This book reviews current techniques used in membrane protein structural biology, with a strong focus on practical issues. The study of membrane protein structures not only provides a basic understanding of life at the molecular level but also helps in the rational and targeted design of new drugs with reduced side effects. Today, about 60% of the commercially available drugs target membrane proteins and it is estimated that nearly 30% of proteins encoded in the human genome are membrane proteins. In recent years much effort has been put towards innovative developments to overcome the numerous obstacles associated with the structure determination of membrane proteins. This book reviews a variety of recent techniques that are essential to any modern researcher in the field of membrane protein structural biology. The topics that are discussed are not commonly found in textbooks. The scope of this book includes: Expression screening using fluorescent proteins The use of detergents in membrane protein research The use of NMR Synchrotron developments in membrane protein structural biology Visualisation and X-ray data collection of microcrystals X-ray diffraction data analysis from multiple crystals Serial millisecond crystallography Serial femtosecond crystallography Membrane protein structures in drug discovery The information provided in this book should be of interest to anyone working in the area of structural biology. Students will find carefully prepared overviews of basic ideas and advanced protein scientists will find the level of detail required to apply the material directly to their day to day work. Chapters 4, 5, 6, 8 and 9 of this book are published open access under a CC BY 4.0 license at link.springer.com.




A Guide to Protein Isolation


Book Description

It is a truism of science that the more fundamental the subject, the more universally applicable it is. Neverthelens, it is important to strike a level of "fundamentalness" appropriate to the task in hand. For example, an in-depth study of the mechanics of motor cars would tell one nothing about the dynamics of traffic. Traffic exists on a different "level" - it is dependent upon the existence of motor vehicles but the physics and mathematics of traffic can be adequately addressed by considering motor vehicles as mobile "blobs", with no consideration of how they become mobile. To start a discourse on traffic with a consideration of the mechanics of motor vehicles would thus be inappropropriate. In writing this volume, I have wrestled with the question of the appropriate level at which to address the physics underlying many of the techniques used in protein isolation. I have tried to strike a level as would be used by a mechanic (with perhaps a slight leaning towards an engineer) - i.e. a practical level, offering appropriate insight but with minimal mathematics. Some people involved in biochemical research have a minimal grounding in chemistry and physics and so I have tried to keep it as simple as possible.