A Short Course in Ordinary Differential Equations


Book Description

This text is a rigorous treatment of the basic qualitative theory of ordinary differential equations, at the beginning graduate level. Designed as a flexible one-semester course but offering enough material for two semesters, A Short Course covers core topics such as initial value problems, linear differential equations, Lyapunov stability, dynamical systems and the Poincaré—Bendixson theorem, and bifurcation theory, and second-order topics including oscillation theory, boundary value problems, and Sturm—Liouville problems. The presentation is clear and easy-to-understand, with figures and copious examples illustrating the meaning of and motivation behind definitions, hypotheses, and general theorems. A thoughtfully conceived selection of exercises together with answers and hints reinforce the reader's understanding of the material. Prerequisites are limited to advanced calculus and the elementary theory of differential equations and linear algebra, making the text suitable for senior undergraduates as well.







Differential Equations


Book Description

First-rate introduction for undergraduates examines first order equations, complex-valued solutions, linear differential operators, the Laplace transform, Picard's existence theorem, and much more. Includes problems and solutions.










A Short Course in Differential Topology


Book Description

This book offers a concise and modern introduction to differential topology, the study of smooth manifolds and their properties, at the advanced undergraduate/beginning graduate level. The treatment throughout is hands-on, including many concrete examples and exercises woven into the text with hints provided to guide the student.




Practical Course In Differential Equations And Mathematical Modelling, A: Classical And New Methods. Nonlinear Mathematical Models. Symmetry And Invariance Principles


Book Description

A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author's own theoretical developments. The book — which aims to present new mathematical curricula based on symmetry and invariance principles — is tailored to develop analytic skills and “working knowledge” in both classical and Lie's methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundamental solution, etc. easy to follow and interesting for students. The book is based on the author's extensive teaching experience at Novosibirsk and Moscow universities in Russia, Collège de France, Georgia Tech and Stanford University in the United States, universities in South Africa, Cyprus, Turkey, and Blekinge Institute of Technology (BTH) in Sweden. The new curriculum prepares students for solving modern nonlinear problems and will essentially be more appealing to students compared to the traditional way of teaching mathematics.




Ordinary Differential Equations


Book Description

Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.




A First Course in Differential Equations, Modeling, and Simulation


Book Description

Emphasizing a practical approach for engineers and scientists, A First Course in Differential Equations, Modeling, and Simulation avoids overly theoretical explanations and shows readers how differential equations arise from applying basic physical principles and experimental observations to engineering systems. It also covers classical methods for




Introduction to Partial Differential Equations with Applications


Book Description

This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.