A Survey of Methods for Safe Human-Robot Interaction


Book Description

Organizes and summarizes the research related to facilitation of safe human-robot interaction. It describes the strategies and methods that have been developed thus far, organizes them into subcategories, characterizes relationships between the strategies, and identifies potential gaps in the existing knowledge that warrant further research.




Human-robot Interaction


Book Description

Presents a unified treatment of HRI-related issues, identifies key themes, and discusses challenge problems that are likely to shape the field in the near future. The survey includes research results from a cross section of the universities, government efforts, industry labs, and countries that contribute to HRI.




Trust in Human-Robot Interaction


Book Description

Trust in Human-Robot Interaction addresses the gamut of factors that influence trust of robotic systems. The book presents the theory, fundamentals, techniques and diverse applications of the behavioral, cognitive and neural mechanisms of trust in human-robot interaction, covering topics like individual differences, transparency, communication, physical design, privacy and ethics. - Presents a repository of the open questions and challenges in trust in HRI - Includes contributions from many disciplines participating in HRI research, including psychology, neuroscience, sociology, engineering and computer science - Examines human information processing as a foundation for understanding HRI - Details the methods and techniques used to test and quantify trust in HRI




Computational Human-Robot Interaction


Book Description

Computational Human-Robot Interaction provides the reader with a systematic overview of the field of Human-Robot Interaction over the past decade, with a focus on the computational frameworks, algorithms, techniques, and models currently used to enable robots to interact with humans.




Proceedings of 5th International Conference on the Industry 4.0 Model for Advanced Manufacturing


Book Description

This book gathers the proceedings of the 5th International Conference on the Industry 4.0 Model for Advanced Manufacturing (AMP 2020), held in Belgrade, Serbia, on 1–4 June 2020. The event marks the latest in a series of high-level conferences that bring together experts from academia and industry to exchange knowledge, ideas, experiences, research findings, and information in the field of manufacturing. The book addresses a wide range of topics, including: design of smart and intelligent products, developments in CAD/CAM technologies, rapid prototyping and reverse engineering, multistage manufacturing processes, manufacturing automation in the Industry 4.0 model, cloud-based products, and cyber-physical and reconfigurable manufacturing systems. By providing updates on key issues and highlighting recent advances in manufacturing engineering and technologies, the book supports the transfer of vital knowledge to the next generation of academics and practitioners. Further, it will appeal to anyone working or conducting research in this rapidly evolving field.




Aerial Manipulation


Book Description

This text is a thorough treatment of the rapidly growing area of aerial manipulation. It details all the design steps required for the modeling and control of unmanned aerial vehicles (UAV) equipped with robotic manipulators. Starting with the physical basics of rigid-body kinematics, the book gives an in-depth presentation of local and global coordinates, together with the representation of orientation and motion in fixed- and moving-coordinate systems. Coverage of the kinematics and dynamics of unmanned aerial vehicles is developed in a succession of popular UAV configurations for multirotor systems. Such an arrangement, supported by frequent examples and end-of-chapter exercises, leads the reader from simple to more complex UAV configurations. Propulsion-system aerodynamics, essential in UAV design, is analyzed through blade-element and momentum theories, analysis which is followed by a description of drag and ground-aerodynamic effects. The central part of the book is dedicated to aerial-manipulator kinematics, dynamics, and control. Based on foundations laid in the opening chapters, this portion of the book is a structured presentation of Newton–Euler dynamic modeling that results in forward and backward equations in both fixed- and moving-coordinate systems. The Lagrange–Euler approach is applied to expand the model further, providing formalisms to model the variable moment of inertia later used to analyze the dynamics of aerial manipulators in contact with the environment. Using knowledge from sensor data, insights are presented into the ways in which linear, robust, and adaptive control techniques can be applied in aerial manipulation so as to tackle the real-world problems faced by scholars and engineers in the design and implementation of aerial robotics systems. The book is completed by path and trajectory planning with vision-based examples for tracking and manipulation.







Perceived Safety


Book Description

This book offers a multidisciplinary perspective on perceived safety. It discusses the concept of safety from engineering, philosophy, and psychology angles, and considers various definitions of safety and its relationship to risk. Examining the categorization of safety and the measurement of risk, risk cultures, basic human needs and decision-making under uncertainty, the contributions demonstrate the practical implications and applications in areas such as health behavior, aviation and sports. Topics covered include: What is “safety” and is there “optimal safety” in engineering? Philosophical perspectives on safety and risk Psychological perspectives on perceived safety: social factors of feeling safe Psychological perspectives on perceived safety: zero-risk bias, feelings & learned carelessness Perception of aviation safety Intended for both practitioners and academic researchers, this book appeals to anyone interested in decision-making and the perception and establishment of safety.




Advanced Computational Methods in Mechanical and Materials Engineering


Book Description

This book provides in-depth knowledge to solve engineering, geometrical, mathematical, and scientific problems with the help of advanced computational methods with a focus on mechanical and materials engineering. Divided into three subsections covering design and fluids, thermal engineering and materials engineering, each chapter includes exhaustive literature review along with thorough analysis and future research scope. Major topics covered pertains to computational fluid dynamics, mechanical performance, design, and fabrication including wide range of applications in industries as automotive, aviation, electronics, nuclear and so forth. Covers computational methods in design and fluid dynamics with a focus on computational fluid dynamics Explains advanced material applications and manufacturing in labs using novel alloys and introduces properties in material Discusses fabrication of graphene reinforced magnesium metal matrix for orthopedic applications Illustrates simulation and optimization gear transmission, heat sink and heat exchangers application Provides unique problem-solution approach including solutions, methodology, experimental setup, and results validation This book is aimed at researchers, graduate students in mechanical engineering, computer fluid dynamics,fluid mechanics, computer modeling, machine parts, and mechatronics.




Human-Computer Interaction


Book Description