Textbook Of Bioinformatics, A: Information-theoretic Perspectives Of Bioengineering And Biological Complexes


Book Description

This book on bioinformatics is designed as an introduction to the conventional details of genomics and proteomics as well as a practical comprehension text with an extended scope on the state-of-the-art bioinformatic details pertinent to next-generation sequencing, translational/clinical bioinformatics and vaccine-design related viral informatics.It includes four major sections: (i) An introduction to bioinformatics with a focus on the fundamentals of information-theory applied to biology/microbiology, with notes on bioinformatic resources, data bases, information networking and tools; (ii) a collection of annotations on the analytics of biomolecular sequences, with pertinent details presented on biomolecular informatics, pairwise and multiple sequences, viral sequence informatics, next-generation sequencing and translational/clinical bioinformatics; (iii) a novel section on cytogenetic and organelle bioinformatics explaining the entropy-theoretics of cellular structures and the underlying informatics of synteny correlations; and (iv) a comprehensive presentation on phylogeny and species informatics.The book is aimed at students, faculty and researchers in biology, health/medical sciences, veterinary/agricultural sciences, bioengineering, biotechnology and genetic engineering. It will be a useful companion for managerial personnel in the biotechnology and bioengineering industries as well as in health/medical science.




Bioinformatics Algorithms


Book Description

Bioinformatics Algorithms: an Active Learning Approach is one of the first textbooks to emerge from the recent Massive Online Open Course (MOOC) revolution. A light-hearted and analogy-filled companion to the authors' acclaimed online course (http://coursera.org/course/bioinformatics), this book presents students with a dynamic approach to learning bioinformatics. It strikes a unique balance between practical challenges in modern biology and fundamental algorithmic ideas, thus capturing the interest of students of biology and computer science students alike.Each chapter begins with a central biological question, such as "Are There Fragile Regions in the Human Genome?" or "Which DNA Patterns Play the Role of Molecular Clocks?" and then steadily develops the algorithmic sophistication required to answer this question. Hundreds of exercises are incorporated directly into the text as soon as they are needed; readers can test their knowledge through automated coding challenges on Rosalind (http://rosalind.info), an online platform for learning bioinformatics.The textbook website (http://bioinformaticsalgorithms.org) directs readers toward additional educational materials, including video lectures and PowerPoint slides.




Essential Bioinformatics


Book Description

Essential Bioinformatics is a concise yet comprehensive textbook of bioinformatics, which provides a broad introduction to the entire field. Written specifically for a life science audience, the basics of bioinformatics are explained, followed by discussions of the state-of-the-art computational tools available to solve biological research problems. All key areas of bioinformatics are covered including biological databases, sequence alignment, genes and promoter prediction, molecular phylogenetics, structural bioinformatics, genomics and proteomics. The book emphasizes how computational methods work and compares the strengths and weaknesses of different methods. This balanced yet easily accessible text will be invaluable to students who do not have sophisticated computational backgrounds. Technical details of computational algorithms are explained with a minimum use of mathematical formulae; graphical illustrations are used in their place to aid understanding. The effective synthesis of existing literature as well as in-depth and up-to-date coverage of all key topics in bioinformatics make this an ideal textbook for all bioinformatics courses taken by life science students and for researchers wishing to develop their knowledge of bioinformatics to facilitate their own research.




Bioinformatics for Beginners


Book Description

Bioinformatics for Beginners: Genes, Genomes, Molecular Evolution, Databases and Analytical Tools provides a coherent and friendly treatment of bioinformatics for any student or scientist within biology who has not routinely performed bioinformatic analysis. The book discusses the relevant principles needed to understand the theoretical underpinnings of bioinformatic analysis and demonstrates, with examples, targeted analysis using freely available web-based software and publicly available databases. Eschewing non-essential information, the work focuses on principles and hands-on analysis, also pointing to further study options. - Avoids non-essential coverage, yet fully describes the field for beginners - Explains the molecular basis of evolution to place bioinformatic analysis in biological context - Provides useful links to the vast resource of publicly available bioinformatic databases and analysis tools - Contains over 100 figures that aid in concept discovery and illustration




Bioinformatics and Computational Biology


Book Description

This textbook introduces fundamental concepts of bioinformatics and computational biology to the students and researchers in biology, medicine, veterinary science, agriculture, and bioengineering . The respective chapters provide detailed information on biological databases, sequence alignment, molecular evolution, next-generation sequencing, systems biology, and statistical computing using R. The book also presents a case-based discussion on clinical, veterinary, agricultural bioinformatics, and computational bioengineering for application-based learning in the respective fields. Further, it offers readers guidance on reconstructing and analysing biological networks and highlights computational methods used in systems medicine and genome-wide association mapping of diseases. Given its scope, this textbook offers an essential introductory book on bioinformatics and computational biology for undergraduate and graduate students in the life sciences, botany, zoology, physiology, biotechnology, bioinformatics, and genomic science as well as systems biology, bioengineering and the agricultural, and veterinary sciences.




Bioinformatics


Book Description

"In this book, Andy Baxevanis and Francis Ouellette . . . haveundertaken the difficult task of organizing the knowledge in thisfield in a logical progression and presenting it in a digestibleform. And they have done an excellent job. This fine text will makea major impact on biological research and, in turn, on progress inbiomedicine. We are all in their debt." —Eric Lander from the Foreword Reviews from the First Edition "...provides a broad overview of the basic tools for sequenceanalysis ... For biologists approaching this subject for the firsttime, it will be a very useful handbook to keep on the shelf afterthe first reading, close to the computer." —Nature Structural Biology "...should be in the personal library of any biologist who usesthe Internet for the analysis of DNA and protein sequencedata." —Science "...a wonderful primer designed to navigate the novice throughthe intricacies of in scripto analysis ... The accomplished genesearcher will also find this book a useful addition to theirlibrary ... an excellent reference to the principles ofbioinformatics." —Trends in Biochemical Sciences This new edition of the highly successful Bioinformatics:A Practical Guide to the Analysis of Genes and Proteinsprovides a sound foundation of basic concepts, with practicaldiscussions and comparisons of both computational tools anddatabases relevant to biological research. Equipping biologists with the modern tools necessary to solvepractical problems in sequence data analysis, the Second Editioncovers the broad spectrum of topics in bioinformatics, ranging fromInternet concepts to predictive algorithms used on sequence,structure, and expression data. With chapters written by experts inthe field, this up-to-date reference thoroughly covers vitalconcepts and is appropriate for both the novice and the experiencedpractitioner. Written in clear, simple language, the book isaccessible to users without an advanced mathematical or computerscience background. This new edition includes: All new end-of-chapter Web resources, bibliographies, andproblem sets Accompanying Web site containing the answers to the problems,as well as links to relevant Web resources New coverage of comparative genomics, large-scale genomeanalysis, sequence assembly, and expressed sequence tags A glossary of commonly used terms in bioinformatics andgenomics Bioinformatics: A Practical Guide to the Analysis of Genesand Proteins, Second Edition is essential reading forresearchers, instructors, and students of all levels in molecularbiology and bioinformatics, as well as for investigators involvedin genomics, positional cloning, clinical research, andcomputational biology.




Bioinformatics


Book Description

An unprecedented wealth of data is being generated by genome sequencing projects and other experimental efforts to determine the structure and function of biological molecules. The demands and opportunities for interpreting these data are expanding more than ever. Biotechnology, pharmacology, and medicine will be particularly affected by the new results and the increased understanding of life at the molecular level. Bioinformatics is the development and application of computer methods for analysis, interpretation, and prediction, as well as for the design of experiments. It has emerged as a strategic frontier between biology and computer science. Machine learning approaches (e.g., neural networks, hidden Markov models, and belief networks) are ideally suited for areas where there is a lot of data but little theory—and this is exactly the situation in molecular biology. As with its predecessor, statistical model fitting, the goal in machine learning is to extract useful information from a body of data by building good probabilistic models. The particular twist behind machine learning, however, is to automate the process as much as possible. In this book, Pierre Baldi and Soren Brunak present the key machine learning approaches and apply them to the computational problems encountered in the analysis of biological data. The book is aimed at two types of researchers and students. First are the biologists and biochemists who need to understand new data-driven algorithms, such as neural networks and hidden Markov models, in the context of biological sequences and their molecular structure and function. Second are those with a primary background in physics, mathematics, statistics, or computer science who need to know more about specific applications in molecular biology.




Mathematics of Bioinformatics


Book Description

Mathematics of Bioinformatics: Theory, Methods, and Applications provides a comprehensive format for connecting and integrating information derived from mathematical methods and applying it to the understanding of biological sequences, structures, and networks. Each chapter is divided into a number of sections based on the bioinformatics topics and related mathematical theory and methods. Each topic of the section is comprised of the following three parts: an introduction to the biological problems in bioinformatics; a presentation of relevant topics of mathematical theory and methods to the bioinformatics problems introduced in the first part; an integrative overview that draws the connections and interfaces between bioinformatics problems/issues and mathematical theory/methods/applications.




Statistical Methods in Bioinformatics


Book Description

Advances in computers and biotechnology have had a profound impact on biomedical research, and as a result complex data sets can now be generated to address extremely complex biological questions. Correspondingly, advances in the statistical methods necessary to analyze such data are following closely behind the advances in data generation methods. The statistical methods required by bioinformatics present many new and difficult problems for the research community. This book provides an introduction to some of these new methods. The main biological topics treated include sequence analysis, BLAST, microarray analysis, gene finding, and the analysis of evolutionary processes. The main statistical techniques covered include hypothesis testing and estimation, Poisson processes, Markov models and Hidden Markov models, and multiple testing methods. The second edition features new chapters on microarray analysis and on statistical inference, including a discussion of ANOVA, and discussions of the statistical theory of motifs and methods based on the hypergeometric distribution. Much material has been clarified and reorganized. The book is written so as to appeal to biologists and computer scientists who wish to know more about the statistical methods of the field, as well as to trained statisticians who wish to become involved with bioinformatics. The earlier chapters introduce the concepts of probability and statistics at an elementary level, but with an emphasis on material relevant to later chapters and often not covered in standard introductory texts. Later chapters should be immediately accessible to the trained statistician. Sufficient mathematical background consists of introductory courses in calculus and linear algebra. The basic biological concepts that are used are explained, or can be understood from the context, and standard mathematical concepts are summarized in an Appendix. Problems are provided at the end of each chapter allowing the reader to develop aspects of the theory outlined in the main text. Warren J. Ewens holds the Christopher H. Brown Distinguished Professorship at the University of Pennsylvania. He is the author of two books, Population Genetics and Mathematical Population Genetics. He is a senior editor of Annals of Human Genetics and has served on the editorial boards of Theoretical Population Biology, GENETICS, Proceedings of the Royal Society B and SIAM Journal in Mathematical Biology. He is a fellow of the Royal Society and the Australian Academy of Science. Gregory R. Grant is a senior bioinformatics researcher in the University of Pennsylvania Computational Biology and Informatics Laboratory. He obtained his Ph.D. in number theory from the University of Maryland in 1995 and his Masters in Computer Science from the University of Pennsylvania in 1999. Comments on the first edition: "This book would be an ideal text for a postgraduate course...[and] is equally well suited to individual study.... I would recommend the book highly." (Biometrics) "Ewens and Grant have given us a very welcome introduction to what is behind those pretty [graphical user] interfaces." (Naturwissenschaften) "The authors do an excellent job of presenting the essence of the material without getting bogged down in mathematical details." (Journal American Statistical Association) "The authors have restructured classical material to a great extent and the new organization of the different topics is one of the outstanding services of the book." (Metrika)




Bioinformatics and Computational Biology Solutions Using R and Bioconductor


Book Description

Full four-color book. Some of the editors created the Bioconductor project and Robert Gentleman is one of the two originators of R. All methods are illustrated with publicly available data, and a major section of the book is devoted to fully worked case studies. Code underlying all of the computations that are shown is made available on a companion website, and readers can reproduce every number, figure, and table on their own computers.