Abelian Groups


Book Description

Abelian Groups deals with the theory of abelian or commutative groups, with special emphasis on results concerning structure problems. More than 500 exercises of varying degrees of difficulty, with and without hints, are included. Some of the exercises illuminate the theorems cited in the text by providing alternative developments, proofs or counterexamples of generalizations. Comprised of 16 chapters, this volume begins with an overview of the basic facts on group theory such as factor group or homomorphism. The discussion then turns to direct sums of cyclic groups, divisible groups, and direct summands and pure subgroups, as well as Kulikov's basic subgroups. Subsequent chapters focus on the structure theory of the three main classes of abelian groups: the primary groups, the torsion-free groups, and the mixed groups. Applications of the theory are also considered, along with other topics such as homomorphism groups and endomorphism rings; the Schreier extension theory with a discussion of the group of extensions and the structure of the tensor product. In addition, the book examines the theory of the additive group of rings and the multiplicative group of fields, along with Baer's theory of the lattice of subgroups. This book is intended for young research workers and students who intend to familiarize themselves with abelian groups.




Abelian Groups


Book Description

Written by one of the subject’s foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of un decidability problems. The treatment of the latter trend includes Shelah’s seminal work on the un decidability in ZFC of Whitehead’s Problem; while the treatment of the former trend includes an extensive (but non-exhaustive) study of p-groups, torsion-free groups, mixed groups and important classes of groups arising from ring theory. To prepare the reader to tackle these topics, the book reviews the fundamentals of abelian group theory and provides some background material from category theory, set theory, topology and homological algebra. An abundance of exercises are included to test the reader’s comprehension, and to explore noteworthy extensions and related sidelines of the main topics. A list of open problems and questions, in each chapter, invite the reader to take an active part in the subject’s further development.




Endomorphism Rings of Abelian Groups


Book Description

Every Abelian group can be related to an associative ring with an identity element, the ring of all its endomorphisms. Recently the theory of endomor phism rings of Abelian groups has become a rapidly developing area of algebra. On the one hand, it can be considered as a part of the theory of Abelian groups; on the other hand, the theory can be considered as a branch of the theory of endomorphism rings of modules and the representation theory of rings. There are several reasons for studying endomorphism rings of Abelian groups: first, it makes it possible to acquire additional information about Abelian groups themselves, to introduce new concepts and methods, and to find new interesting classes of groups; second, it stimulates further develop ment of the theory of modules and their endomorphism rings. The theory of endomorphism rings can also be useful for studies of the structure of additive groups of rings, E-modules, and homological properties of Abelian groups. The books of Baer [52] and Kaplansky [245] have played an important role in the early development of the theory of endomorphism rings of Abelian groups and modules. Endomorphism rings of Abelian groups are much stu died in monographs of Fuchs [170], [172], and [173]. Endomorphism rings are also studied in the works of Kurosh [287], Arnold [31], and Benabdallah [63].




Abelian Group Theory


Book Description

A conference on Abelian Group Theory was held at the Manoa Campus of the University of Hawaii from December 28, 1982 to January 4, 1983. It was probably the best attended conference on Abelian Group Theory to date with 55 participants from allover the world and the busiest one with 49 talks. A special feature were general interest lectures by Hyman Bass, Columbia University, on "Non-linear Algebra", and by Claus Michael Ringel, Uni versiUit Bielefeld, on "Representations of Algebras". The Conference offered surveys by Laszlo Fuchs, Tulane University, on "Torsion Modules over Valuation Rings", Fred Richman, New Mexico State University, on "Mixed Groups", Paul Eklof, University of California at Irvine, on "Set Theory and Structure Theorems", Rudiger Gobel, Un:i:versitat Essen on "Endomorphism Rings", and Lee Lady, University of Hawaii, on "Torsion Free Groups of Finite Rank". The research reports attested to lively activity in the traditional and in new areas of inquiry within and around Abelian Group Theory. The best represented groups were those of finite rank without torsion, a field employing increasingly sophisticated tools from ring theory and algebraic number theory. The use of set theoretic methods continues to flourish after the pioneering work of Saharon Shelah in the 1970s, and is delivering impressive results. This volume contains the papers of the participants df the C- ferencean6 a number of additional articles of others who could not or did not corne.




Abelian Groups


Book Description

This volume contains information offered at the international conference held in Curacao, Netherlands Antilles. It presents the latest developments in the most active areas of abelian groups, particularly in torsion-free abelian groups.;For both researchers and graduate students, it reflects the current status of abelian group theory.;Abelian Groups discusses: finite rank Butler groups; almost completely decomposable groups; Butler groups of infinite rank; equivalence theorems for torsion-free groups; cotorsion groups; endomorphism algebras; and interactions of set theory and abelian groups.;This volume contains contributions from international experts. It is aimed at algebraists and logicians, research mathematicians, and advanced graduate students in these disciplines.




Exercises in Abelian Group Theory


Book Description

This book, in some sense, began to be written by the first author in 1983, when optional lectures on Abelian groups were held at the Fac ulty of Mathematics and Computer Science,'Babes-Bolyai' University in Cluj-Napoca, Romania. From 1992,these lectures were extended to a twosemester electivecourse on abelian groups for undergraduate stu dents, followed by a twosemester course on the same topic for graduate students in Algebra. All the other authors attended these two years of lectures and are now Assistants to the Chair of Algebra of this Fac ulty. The first draft of this collection, including only exercises solved by students as home works, the last ten years, had 160pages. We felt that there is a need for a book such as this one, because it would provide a nice bridge between introductory Abelian Group Theory and more advanced research problems. The book InfiniteAbelianGroups, published by LaszloFuchsin two volumes 1970 and 1973 willwithout doubt last as the most important guide for abelian group theorists. Many exercises are selected from this source but there are plenty of other bibliographical items (see the Bibliography) which were used in order to make up this collection. For some of the problems stated, recent developments are also given. Nevertheless, there are plenty of elementary results (the so called 'folklore') in Abelian Group Theory whichdo not appear in any written material. It is also one purpose of this book to complete this gap.




Abelian Groups and Modules


Book Description




Abelian Groups, Module Theory, and Topology


Book Description

Features a stimulating selection of papers on abelian groups, commutative and noncommutative rings and their modules, and topological groups. Investigates currently popular topics such as Butler groups and almost completely decomposable groups.




Rings and Things and a Fine Array of Twentieth Century Associative Algebra


Book Description

This book surveys more than 125 years of aspects of associative algebras, especially ring and module theory. It is the first to probe so extensively such a wealth of historical development. Moreover, the author brings the reader up to date, in particular through his report on the subject in the second half of the twentieth century. Included in the book are certain categorical properties from theorems of Frobenius and Stickelberger on the primary decomposition of finite Abelian formulations of the latter by Krull, Goldman, and others; Maschke's theorem on the representation theory of finite groups over a field; and the fundamental theorems of Wedderburn on the structure of finite dimensional algebras Goldie, and others. A special feature of the book is the in-depth study of rings with chain condition on annihilator ideals pioneered by Noether, Artin, and Jacobson and refined and extended by many later mathematicians. Two of the author's prior works, Algebra: Rings, Modules and Categories, I and II (Springer-Verlag, 1973), are devoted to the development of modern associative algebra and ring and module theory. Those bibliography of over 1,600 references and is exhaustively indexed. In addition to the mathematical survey, the author gives candid and descriptive impressions of the last half of the twentieth century in ''Part II: Snapshots of fellow graduate students at the University of Kentucky and at Purdue, Faith discusses his Fulbright-Nato Postdoctoral at Heidelberg and at the Institute for Advanced Study (IAS) at Princeton, his year as a visiting scholar at Berkeley, and the many acquaintances he met there and in subsequent travels in India, Europe, and most recently, Barcelona. Comments on the first edition: ''Researchers in algebra should find it both full references as to the origin and development of the theorem ... I know of no other work in print which does this as thoroughly and as broadly.'' --John O'Neill, University of Detroit at Mercy '' 'Part II: Snapshots of Mathematicians of my age and younger will relish reading 'Snapshots'.'' --James A. Huckaba, University of Missouri-Columbia




Abelian Groups and Noncommutative Rings: A Collection of Papers in Memory of Robert B. Warfield, Jr.


Book Description

This collection of research papers is dedicated to the memory of the distinguished algebraist Robert B. Warfield, Jr. Focusing on abelian group theory and noncommutative ring theory, the book covers a wide range of topics reflecting Warfield's interests and includes two articles surveying his contributions to mathematics. Because the articles have been refereed to high standards and will not appear elsewhere, this volume is indispensable to any researcher in noncommutative ring theory or abelian group theory. With papers by some of the major leaders in the field, this book will also be important to anyone interested in these areas, as it provides an overview of current research directions.