Clinical Imaging Physics


Book Description

Clinical Medical Imaging Physics: Current and Emerging Practice is the first text of its kind--a comprehensive reference work covering all imaging modalities in use in clinical medicine today. Destined to become a classic in the field, this book provides state-of-practice descriptions for each imaging modality, followed by special sections on new and emerging applications, technologies, and practices. Authored by luminaries in the field of medical physics, this resource is a sophisticated, one-volume handbook to a fast-advancing field that is becoming ever more central to contemporary clinical medicine. Summarizes the current state of clinical medical imaging physics in one volume, with a focus on emerging technologies and applications Provides comprehensive coverage of all key clinical imaging modalities, taking into account the new realities in healthcare practice Features a strong focus on clinical application of principles and technology, now and in the future Contains authoritative text compiled by world-renowned editors and contributors responsible for guiding the development of the field Practicing radiologists and medical physicists will appreciate Clinical Medical Imaging Physics as a peerless everyday reference work. Additionally, graduate students and residents in medical physics and radiology will find this book essential as they study for their board exams.




Accreditation Programs and the Medical Physicist


Book Description

The book is based on the October 2000 symposium organized by the Upstate New York Chapter of the AAPM. This symposium brought together a distinguished group from medical facilities, professional organizations, government, and industry. Presentations covered the latest advances in film and processor technology, laser and dry media in medical imaging, accreditation, and MQSA requirements.




Radiation Oncology Physics


Book Description

This publication is aimed at students and teachers involved in teaching programmes in field of medical radiation physics, and it covers the basic medical physics knowledge required in the form of a syllabus for modern radiation oncology. The information will be useful to those preparing for professional certification exams in radiation oncology, medical physics, dosimetry or radiotherapy technology.




Radiation Physics for Medical Physicists


Book Description

This book summarizes basic knowledge of atomic, nuclear, and radiation physics that professionals need for efficient and safe use of ionizing radiation. Concentrating on the underlying principles of radiation physics, it covers prerequisite knowledge for medical physics courses on the graduate and post-graduate levels, providing the link between elementary physics on the one hand and the intricacies of the medical physics specialties on the other.




Problems and Solutions in Medical Physics


Book Description

The first in a three-volume set exploring Problems and Solutions in Medical Physics, this volume explores common questions and their solutions in Diagnostic Imaging. This invaluable study guide should be used in conjunction with other key textbooks in the field to provide additional learning opportunities. It contains key imaging modalities, exploring X-ray, mammography, and fluoroscopy, in addition to computed tomography, magnetic resonance imaging, and ultrasonography. Each chapter provides examples, notes, and references for further reading to enhance understanding. Features: Consolidates concepts and assists in the understanding and applications of theoretical concepts in medical physics Assists lecturers and instructors in setting assignments and tests Suitable as a revision tool for postgraduate students sitting medical physics, oncology, and radiology sciences examinations




Radiation Protection and Safety in Medical Uses of Ionizing Radiation


Book Description

This Safety Guide provides recommendations and guidance on fulfilling the requirements of IAEA Safety Standards Series No. GSR Part 3 for ensuring radiation protection and safety of radiation sources in medical uses of ionizing radiation with regard to patients, workers, carers and comforters, volunteers in biomedical research, and the public. It covers radiological procedures in diagnostic radiology (including dentistry), image guided interventional procedures, nuclear medicine, and radiotherapy. Recommendations and guidance are provided on applying a systematic approach to ensure that there is a balance between being able to utilize the benefits from medical uses of ionizing radiation and minimizing the risk of radiation effects to people.




Medical Imaging Physics


Book Description

William Hendee and Russell Ritenour's comprehensive text provides the tools necessary to be comfortable with the physical principles, technology concepts, equiment, and procedures used in diagnostic imaging, as well as to appreciate the technological capabilities and limitations of the discipline. Readers need not possess a background in physics. Broadly accessible, Medical Imaging Physics covers all aspects of image formation in modern medical imaging modalities, such as radiography, ultrasonography, computed tomopgraphy(CT), nuclear imaging, and magnetic resonance. Other topics covered include; Digital x-ray imaging Doppler ultrasound Helical CT scanning Accumulation and analysis of nuclear data Experimental radiobiology Radiation protection and safety




Radiation Physics for Medical Physicists


Book Description

This textbook summarizes the basic knowledge of atomic, nuclear, and radiation physics that professionals working in medical physics and biomedical engineering need for efficient and safe use of ionizing radiation in medicine. Concentrating on the underlying principles of radiation physics, the textbook covers the prerequisite knowledge for medical physics courses on the graduate and post-graduate levels in radiotherapy physics, radiation dosimetry, imaging physics, and health physics, thus providing the link between elementary undergraduate physics and the intricacies of four medical physics specialties: diagnostic radiology physics, nuclear medicine physics, radiation oncology physics, and health physics. To recognize the importance of radiation dosimetry to medical physics three new chapters have been added to the 14 chapters of the previous edition. Chapter 15 provides a general introduction to radiation dosimetry. Chapter 16 deals with absolute radiation dosimetry systems that establish absorbed dose or some other dose related quantity directly from the signal measured by the dosimeter. Three absolute dosimetry techniques are known and described in detail: (i) calorimetric; (ii) chemical (Fricke), and (iii) ionometric. Chapter 17 deals with relative radiation dosimetry systems that rely on a previous dosimeter calibration in a known radiation field. Many relative radiation dosimetry systems have been developed to date and four most important categories used routinely in medicine and radiation protection are described in this chapter: (i) Ionometric dosimetry; (ii) Luminescence dosimetry; (iii) Semiconductor dosimetry; and (iv) Film dosimetry. The book is intended as a textbook for a radiation physics course in academic medical physics graduate programs as well as a reference book for candidates preparing for certification examinations in medical physics sub-specialties. It may also be of interest to many professionals, not only physicists, who in their daily occupations deal with various aspects of medical physics or radiation physics and have a need or desire to improve their understanding of radiation physics.




Advancing Nuclear Medicine Through Innovation


Book Description

Nearly 20 million nuclear medicine procedures are carried out each year in the United States alone to diagnose and treat cancers, cardiovascular disease, and certain neurological disorders. Many of the advancements in nuclear medicine have been the result of research investments made during the past 50 years where these procedures are now a routine part of clinical care. Although nuclear medicine plays an important role in biomedical research and disease management, its promise is only beginning to be realized. Advancing Nuclear Medicine Through Innovation highlights the exciting emerging opportunities in nuclear medicine, which include assessing the efficacy of new drugs in development, individualizing treatment to the patient, and understanding the biology of human diseases. Health care and pharmaceutical professionals will be most interested in this book's examination of the challenges the field faces and its recommendations for ways to reduce these impediments.




Radiation Protection and Safety of Radiation Sources


Book Description

This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered.