Numerical Methods for Hyperbolic Equations


Book Description

Numerical Methods for Hyperbolic Equations is a collection of 49 articles presented at the International Conference on Numerical Methods for Hyperbolic Equations: Theory and Applications (Santiago de Compostela, Spain, 4-8 July 2011). The conference was organized to honour Professor Eleuterio Toro in the month of his 65th birthday. The topics covered include: • Recent advances in the numerical computation of environmental conservation laws with source terms • Multiphase flow and porous media • Numerical methods in astrophysics • Seismology and geophysics modelling • High order methods for hyperbolic conservation laws • Numerical methods for reactive flows • Finite volume and discontinous Galerkin schemes for stiff source term problems • Methods and models for biomedical problems • Numerical methods for reactive flows The research interest of Eleuterio Toro, born in Chile on 16th July 1946, is reflected in Numerical Methods for Hyperbolic Equations, and focuses on: numerical methods for partial differential equations, with particular emphasis on methods for hyperbolic equations; design and application of new algorithms; hyperbolic partial differential equations as mathematical models of various types of processes; mathematical modelling and simulation of physico/chemical processes that include wave propagation phenomena; modelling of multiphase flows; application of models and methods to real problems. Eleuterio Toro received several honours and distinctions, including the honorary title OBE from Queen Elizabeth II (Buckingham Palace, London 2000); Distinguished Citizen of the City of Carahue (Chile, 2001); Life Fellow, Claire Hall, University of Cambridge (UK, 2003); Fellow of the Indian Society for Shock Wave Research (Bangalore, 2005); Doctor Honoris Causa (Universidad de Santiago de Chile, 2008); William Penney Fellow, University of Cambridge (UK, 2010); Doctor Honoris Causa (Universidad de la Frontera, Chile, 2012). Professor Toro is author of two books, editor of two books and author of more than 260 research works. In the last ten years he has been invited and keynote speaker in more than 100 scientific events. Professor Toro has held many visiting appointments round the world, which include several European countries, Japan, China and USA.




Computational Fluid Dynamics 2008


Book Description

We are delighted to present this book which contains the Proceedings of the Fifth International Conference on Computational Fluid Dynamics (ICCFD5), held in Seoul, Korea from July 7 through 11, 2008. The ICCFD series has established itself as the leading international conference series for scientists, mathematicians, and engineers specialized in the computation of fluid flow. In ICCFD5, 5 Invited Lectures and 3 Keynote Lectures were delivered by renowned researchers in the areas of innovative modeling of flow physics, innovative algorithm development for flow simulation, optimization and control, and advanced multidisciplinary - plications. There were a total of 198 contributed abstracts submitted from 25 countries. The executive committee consisting of C. H. Bruneau (France), J. J. Chattot (USA), D. Kwak (USA), N. Satofuka (Japan), and myself, was responsible for selection of papers. Each of the members had a separate subcommittee to carry out the evaluation. As a result of this careful peer review process, 138 papers were accepted for oral presentation and 28 for poster presentation. Among them, 5 (3 oral and 2 poster presentation) papers were withdrawn and 10 (4 oral and 6 poster presentation) papers were not presented. The conference was attended by 201 delegates from 23 countries. The technical aspects of the conference were highly beneficial and informative, while the non-technical aspects were fully enjoyable and memorable. In this book, 3 invited lectures and 1 keynote lecture appear first. Then 99 c- tributed papers are grouped under 21 subject titles which are in alphabetical order.







Cognitive Movement Ecology


Book Description

At least since Darwin argued that the difference in cognitive abilities between animals and humans is one of degree and not of kind, the study of animal cognition has been an active and dynamic subfield of behavioral sciences. It has, however, been based almost entirely on experimental studies of animals in captivity and belongs - as a field - more snugly in the realm of Psychology (or Ethology), with relatively little application to understanding the behavior of animals in the wild. Movement Ecology, in contrast, is a more recent branch of Ecology devoted almost entirely to the analysis of animal movements in the wild. Technological developments allow for animals to be tracked in the wild in ever-increasing numbers, precision, and duration. Movement ecology has, to some extent, “chased the data”, reflecting the practical need to analyze and interpret those data. Much of the most important developments of recent decades are devoted to dealing with the trickier aspects of the statistical analysis of movement data - which in their multidimensionality, autocorrelation, gappiness and measurement error, and behavioral complexity pose no shortage of hairy statistical problems.




Computational Fluid Dynamics


Book Description

Computational Fluid Dynamics: Principles and Applications, Third Edition presents students, engineers, and scientists with all they need to gain a solid understanding of the numerical methods and principles underlying modern computation techniques in fluid dynamics. By providing complete coverage of the essential knowledge required in order to write codes or understand commercial codes, the book gives the reader an overview of fundamentals and solution strategies in the early chapters before moving on to cover the details of different solution techniques. This updated edition includes new worked programming examples, expanded coverage and recent literature regarding incompressible flows, the Discontinuous Galerkin Method, the Lattice Boltzmann Method, higher-order spatial schemes, implicit Runge-Kutta methods and parallelization. An accompanying companion website contains the sources of 1-D and 2-D Euler and Navier-Stokes flow solvers (structured and unstructured) and grid generators, along with tools for Von Neumann stability analysis of 1-D model equations and examples of various parallelization techniques. - Will provide you with the knowledge required to develop and understand modern flow simulation codes - Features new worked programming examples and expanded coverage of incompressible flows, implicit Runge-Kutta methods and code parallelization, among other topics - Includes accompanying companion website that contains the sources of 1-D and 2-D flow solvers as well as grid generators and examples of parallelization techniques










Progress in Computational Flow-Structure Interaction


Book Description

Aircraft design processes require extensive work in the area of both aerodynamics and structure, fonning an environment for aeroelasticity investigations. Present and future designs of European aircraft are characterized by an ever increasing aircraft size and perfonnance. Strong weight saving requirements are met by introduction of new materials, leading to more flexible structure of the aircraft. Consequently, aeroelastic phenomena such as vortex-induced aeroelastic oscillations and moving shock waves can be predominant and may have a significant effect on the aircraft perfonnance. Hence, the ability to estimate reliable margins for aeroelastic instabilities (flutter) or dynamic loads (buffeting) is a major concern to the aircraft designer. As modern aircrafts have wing bending modes with frequencies that are low enough to influence the flight control system, demands on unsteady aerodynamics and structural analysis to predict flight control effectiveness and riding comfort for passengers are extremely high. Therefore, the aircraft industries need an improved capacity of robust, accurate and reliable prediction methods in the coupled aeroelastic, flight mechanics and loads disciplines. In particular, it is necessary to develop/improve and calibrate the numerical tools in order to predict with high level of accuracy and capability complex and non-classical aeroelastic phenomena, including aerodynamic non-linearities, such as shock waves and separation, as well as structural non-linearities, e. g. control surface free-play. Nowadays, robust methods for structural analysis and linearised unsteady aerodynamics are coupled and used by the aircraft industry to computationally clear a new design from flutter.