Acoustic Wave Sensors


Book Description

Written by an interdisciplinary group of experts from both industry and academia, Acoustic Wave Sensors provides an in-depth look at the current state of acoustic wave devices and the scope of their use in chemical, biochemical, and physical measurements, as well as in engineering applications. Because of the inherent interdisciplinary applications of these devices, this book will be useful for the chemist and biochemist interested in the use and development ofthese sensors for specific applications; the electrical engineer involved in the design and improvement of these devices; the chemical engineer and the biotechnologist interested in using these devices for process monitoring and control; and the sensor community at large. - Provides in-depth comparison and analyses of different types of acoustic wave devices - Discusses operating principles and design considerations - Includes table of relevant material constants for quick reference - Presents an extensive review of current uses of these devices for chemical, biochemical, and physical measurements, and engineering applications




Surface Acoustic Wave Devices in Telecommunications


Book Description

Surface acoustic wave (SAW) devices are widely used in mobile communications, a rapidly evolving market. This book gives an overview on the latest SAW technologies with an emphasis on the design and simulation of devices, such as resonator-based devices employing the SH-type leaky SAW.




Acoustic Sensors for Biomedical Applications


Book Description

In this book, application-related studies for acoustic biomedical sensors are covered in depth. The book features an array of different biomedical signals, including acoustic biomedical signals as well as the thermal biomedical signals, magnetic biomedical signals, and optical biomedical signals to support healthcare. It employs signal processing approaches, such as filtering, Fourier transform, spectral estimation, and wavelet transform. The book presents applications of acoustic biomedical sensors and bio-signal processing for prediction, detection, and monitoring of some diseases from the phonocardiogram (PCG) signal analysis. Several challenges and future perspectives related to the acoustic sensors applications are highlighted. This book supports the engineers, researchers, designers, and physicians in several interdisciplinary domains that support healthcare.




Surface-Launched Acoustic Wave Sensors


Book Description

The book begins with a review of piezoelectricity and the genesis of acoustic wave devices, and the advent of chemical sensor technology. Subsequent chapters explore acoustic waves in solids and device structure, theory of acoustic wave response, and the various categories of acoustic wave device. The book describes the design of these devices and how they are applied in chemistry for the detection of species present in the gas and liquid phase, as well as the study of thin films placed on the sensor surface. Other topics covered include polymeric glass transitions, polymer properties, biosensor technology, and the development of sensor arrays. Each of the various types of device is examined with a view toward its application in chemistry in general and analytical chemistry in particular.




Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices


Book Description

Acoustics is a mature field which enjoys a never ending youth. New developments are induced by either the search for a better understanding, or by technological innovations. Micro-fabrication techniques introduced a whole new class of microdevices, which exploit acoustic waves for various tasks, and in particular for information processing and for sensing purposes. Performance improvements are achievable by better modelling tools, able to deal with more complex configurations, and by more refined techniques of fabrication and of integration in technological systems, like wireless communications. Several chapters of this book deal with modelling and fabrication techniques for microdevices, including unconventional phenomena and configurations. But this is far from exhausting the research lines in acoustics. Theoretical analyses and modelling techniques are presented, for phenomena ranging from the detection of cracks to the acoustics of the oceans. Measurement methods are also discussed, which probe by acoustic waves the properties of widely different systems.




Transducers '97 Chicago


Book Description

This volume reports on applications in production processes utilizing advanced sensors. New types of devices, their fabrication and application in industry, research and products are presented with a focus on the industrialization of sensors."




Advances in Surface Acoustic Wave Technology, Systems and Applications


Book Description

Surface acoustic wave (SAW) devices are recognized for their versatility and efficiency in controlling and processing electrical signals. This has resulted in a multitude of device concepts for a wide range of signal processing functions, such as delay lines, filters, resonators, pulse compressors, convolvers, and many more. As SAW technology has found its way into mass market products such as TV receivers, pagers, keyless entry systems and cellular phones, the production volume has risen to millions of devices produced every day. At the other end of the scale, these are specialized high performance signal processing SAW devices for satellite communication and military applications, such as radar and electronic warfare. This volume, together with Volume 1, presents an overview of recent advances in SAW technology, systems and applications by some of the foremost researchers in this exciting field. Contents: Coupling-of-Modes Analysis of SAW Devices (V Plessky & J Koskela); Theory and Applications of Green''s Functions (A R Baghai-Wadji); New Piezoelectric Substrates for SAW Devices (J Kosinski); Pseudo and High Velocity Pseudo SAWs (M P da Cunha); SAW Devices Beyond 5 GHz (H Odagawa & K Yamanouchi); Wireless SAW Identification and Sensor Systems (F Schmidt & G Scholl); Interaction of Surface Acoustic Waves, Electrons, and Light (A Wixforth). Readership: Graduate students, researchers and academics in device and circuit design, as well as designers of mobile communications systems.




Gas Sensors


Book Description

There were two reasons that induced me to plan and to organize this book, the first was the lack of a text entirely devoted to the subject of gas sensors, notwithstanding some books devoted to the various kind of chemical sensors have recently been published. The second reason was the need of introducing the basic topics of gas detection mechanisms to a growing number of researchers active in research and development laboratories of industries and uni versities. The field of chemical sensors is indeed in fast and consistent growth, as it is proved by the increased number of participants to the congresses that were recently held on this subject, namely the Third Meeting on Chemical Sensors (September 24 - 26, 1990, Cleveland), Transducers' 91 (June 24 - 27, 1991, S. Francisco) and EUROSENSORS V (September 30 - October 3, 1991, Rome). Therefore, this book is mainly intended as a reference text for researchers with a MS degree in physics, chemistry and electrical engineering; it reports the last progresses in the R. & D. and in the technology of gas sensors. I choose to deal specifically with the topic of gas sensors because these devices show a very large number of applications in the domestic and industrial field and they are characterized by a great effort of research and development.




Acoustic Wave and Electromechanical Resonators


Book Description

This groundbreaking book provides you with a comprehensive understanding of FBAR (thin-film bulk acoustic wave resonator), MEMS (microelectomechanical system), and NEMS (nanoelectromechanical system) resonators. For the first time anywhere, you find extensive coverage of these devices at both the technology and application levels. This practical reference offers you guidance in design, fabrication, and characterization of FBARs, MEMS and NEBS. It discusses the integration of these devices with standard CMOS (complementary-metal-oxide-semiconductor) technologies, and their application to sensing and RF systems. Moreover, this one-stop resource looks at the main characteristics, differences, and limitations of FBAR, MEMS, and NEMS devices, helping you to choose the right approaches for your projects. Over 280 illustrations and more than 130 equations support key topics throughout the book.




Surface Acoustic Wave Filters


Book Description

Surface Acoustic Wave Filters gives the fundamental principles and device design techniques for surface acoustic wave filters. It covers the devices in widespread use today: bandpass and pulse compression filters, correlators and non-linear convolvers and resonators. The newest technologies for low bandpass filters are fully covered such as unidirectional transducers, resonators in impedance element filters, resonators in double-mode surface acoustic wave filters and transverse-coupled resonators using waveguides. The book covers the theory of acoustic wave physics, the piezoelectric effect, electrostatics at a surface, effective permittivity, piezoelectric SAW excitation and reception, and the SAW element factor. These are the main requirements for developing quasi-static theory, which gives a basis for the non-reflective transducers in transversal bandpass filters and interdigital pulse compression filters. It is also needed for the reflective transducers used in the newer devices. A thorough revision of a classic on surface acoustic wave filters first published in 1985 and still in print Uniquely combines easy-to-understand principles with practical design techniques for all the devices in widespread use today Complete coverage of all the latest devices which are key to mobile phones, TVs and radar systems Includes a new foreword by Sir Eric Albert Ash