Industrial Wastewater Treatment by Activated Sludge


Book Description

Industrial pollution is still a major concern and despite its significance, sound and systematic pollution control efforts are very poorly documented. The character and treatability of industrial wastewaters is highly variable and specific for each industrial activity. Biological treatment with activated sludge is the appropriate technology for industrial wastewaters from several major industrial sectors. Industrial Wastewater Treatment by Activated Sludge deals with the activated sludge treatment of industrial wastewaters by considering conceptual frameworks, methodologies and case studies, in a stepwise manner. The issues related to activated sludge treatment, such as biodegradability based characterization, modeling, assessment of stoichiometric and kinetic parameters and design, as well as the issues of industrial pollution control, e.g. in-plant control, effect of pretreatment, etc. are combined in a way to provide a comprehensive and information-rich view to the reader. By doing so, the book supplies an up-to-date reference for industrial wastewater experts and both graduate and undergraduate students. Industrial Wastewater Treatment by Activated Sludge provides a roadmap, describing the methodologies for the treatment of industrial wastewaters from several major sectors, based on a solid theoretical background. Up to now although valuable separate efforts both on activated sludge and industrial wastewater treatment have been presented, an integrated approach that is crucial to practice has not been available. This gap is filled by this book.




Activated Sludge Wastewater Treatment


Book Description

This book is a milestone in the evolution of wastewater treatment operations. It explains the science of treatment framed within an ethics where wastewater personnel are seen as protectors of public health, preservers of the environment, and stewards of public monies. Written by a former plant operator with a Ph.D., the book presents the fundamental science behind the unit processes in wastewater treatment plants, including biological nutrient removal. In so doing, it challenges longstanding operational doctrines enshrined by habit and tradition, such as being careful not to remove too many influent organics in a primary clarifier for fear of starving the microorganisms in the aeration basin, or using the MLSS concentration to control effluent quality, or cutting the growth rate of microorganisms in anticipation of their slower growth rate in winter. Dispelling much of the prevailing that's-the-way-we've-always-done-it dogma is achieved through an elegant and understandable presentation of the biology, chemistry, and physics that explain the phenomena of wastewater treatment. At the same time, the book is intensely practical. It offers detailed and data-based process control solutions to stabilize plant performance, maintain consistent effluent quality, and reduce energy costs. Powerful, easily implemented statistical techniques are given to unlock the meaning of plant performance data and make informed process control decisions. The book's approach is learning-focused, including numerous examples of a failsafe, foolproof arithmetical method that enables operations professionals to define, set up, and solve problems.




Activated Sludge and Aerobic Biofilm Reactors


Book Description

Activated Sludge and Aerobic Biofilm Reactors is the fifth volume in the series Biological Wastewater Treatment. The first part of the book is devoted to the activated sludge process, covering the removal of organic matter, nitrogen and phosphorus.A detailed analysis of the biological reactor (aeration tank) and the final sedimentation tanks is provided. The second part of the book covers aerobic biofilm reactors, especially trickling filters, rotating biological contractors and submerged aerated biofilters. For all the systems, the book presents in a clear and informative way the main concepts, working principles, expected removal efficiencies, design criteria, design examples, construction aspects and operational guidelines. About the series: The series is based on a highly acclaimed set of best selling textbooks. This international version is comprised by six textbooks giving a state-of-the-art presentation of the science and technology of biological wastewater treatment. Other titles in the series are: Volume 1: Waste Stabilisation Ponds; Volume 2: Basic Principles of Wastewater Treatment; Volume 3: Waste Stabilization Ponds; Volume 4: Anaerobic Reactors; Volume 6: Sludge Treatment and Disposal




Activated Sludge - 100 Years and Counting


Book Description

Activated Sludge - 100 Years and Counting covers the current status of all aspects of the activated sludge process and looks forward to its further development in the future. It celebrates 100 years of the Activated Sludge process, from the time that the early developers presented the seminal works that led to its eventual worldwide adoption. The book assembles contributions from renowned world leaders in activated sludge research, development, technology and application. The objective of the book is to summarise the knowledge of all aspects of the activated sludge process and to present and discuss anticipated future developments. The book comprises invited papers that were delivered at the conference "Activated Sludge...100 Years and Counting!", held in Essen, Germany, June 12th to 14th, 2014. Activated Sludge - 100 Years and Counting is of interest to researchers, engineers, designers, operations specialists, and governmental agencies from a wide range of disciplines associated with all aspects of the activated sludge process. Authors: David Jenkins, University of California at Berkeley, USA, Jiri Wanner, Institute of Chemical Technology, Prague, Czech Republic.




Handbook of Biological Wastewater Treatment


Book Description

The scope of this comprehensive new edition of Handbook of Biological Wastewater Treatment ranges from the design of the activated sludge system, final settlers, auxiliary units (sludge thickeners and digesters) to pre-treatment units such as primary settlers and UASB reactors. The core of the book deals with the optimized design of biological and chemical nutrient removal. The book presents the state-of-the-art theory concerning the various aspects of the activated sludge system and develops procedures for optimized cost-based design and operation. It offers a truly integrated cost-based design method that can be easily implemented in spreadsheets and adapted to the particular needs of the user. Handbook of Biological Wastewater Treatment: Second Edition incorporates valuable new material that improves the instructive qualities of the first edition. The book has a new structure that makes the material more readily understandable and the numerous additional examples clarify the text. On the website www.wastewaterhandbook.com three free excel design spreadsheets for different configurations (secondary treatment with and without primary settling and nitrogen removal) can be downloaded to get the reader started with their own design projects. New sections have been added throughout: to explain the difference between true and apparent yield while the section on the F/M ratio, and especially the reasons not to use it, has been expanded; to demonstrate the effect of the oxygen recycle to the anoxic zones on both the denitrification capacity and the concept of available nitrate is explained in more detail. the latest developments on the causes and solution to sludge bulking and scum formation to show the rapid developments of innovative nitrogen removal and sludge separation problems the anaerobic pre-treatment section is completely rewritten based on the experiences obtained from an extensive review of large full-scale UASB based sewage treatment plants a new section on industrial anaerobic wastewater treatment three new appendices have been added. These deal with the calibration of the denitrification model, empirical design guidelines for final settler design (STORA/STOWA and ATV) and with the potential for development of denitrification in the final settler. A new chapter on moving bed biofilm reactors Handbook of Biological Wastewater Treatment: Second Edition is written for post graduate students and engineers in consulting firms and environmental protection agencies. It is an invaluable resource for everybody working in the field of wastewater treatment. Lecturer support material is available when adopted for university courses. This includes course material for the first 7 modules in the form of PDF printouts and an exercise file with questions and answers and a symbol list. Authors: Prof. dr. ir. A.C. van Haandel, Federal University of Campina Grande - Brazil and Ir. J.G.M. van der Lubbe, Biothane Systems International - Veolia, The Netherlands




Respirometry in Control of the Activated Sludge Process


Book Description

Ebook only (available soon) The report describes the principles of measurement of respiration rate, the transformation of measurement data into other types of information, and the application of the obtained information in process control strategies. Some fundamental concepts on biological respiration and process control are provided to assist the reader with understanding the principles. A structured overview comprises some eighty control strategies in which respirometry plays a role. To enable the reader to consult the information sources, an extensive literature list of over 500 references in included and classified into six themes. Contents Fundamentals of Respiration Measuring Principles Measured and Deduced Variables Elementary Control Concepts Respirometry in Control of the Activated Sludge Process Summary and Perspectives. Scientific and Technical Report No.7 Also Available Respirometry in Control of the Activated Sludge Process: Benchmarking Control Strategies




Applications of Activated Sludge Models


Book Description

In 1982 the International Association on Water Pollution Research and Control (IAWPRC), as it was then called, established a Task Group on Mathematical Modelling for Design and Operation of Activated Sludge Processes. The aim of the Task Group was to create a common platform that could be used for the future development of models for COD and N removal with a minimum of complexity. As the collaborative result of the work of several modelling groups, the Activated Sludge Model No. 1 (ASM1) was published in 1987, exactly 25 years ago. The ASM1 can be considered as the reference model, since this model triggered the general acceptance of wastewater treatment modelling, first in the research community and later on also in practice. ASM1 has become a reference for many scientific and practical projects, and has been implemented (in some cases with modifications) in most of the commercial software available for modelling and simulation of plants for N removal. The models have grown more complex over the years, from ASM1, including N removal processes, to ASM2 (and its variations) including P removal processes, and ASM3 that corrects the deficiencies of ASM1 and is based on a metabolic approach to modelling. So far, ASM1 is the most widely applied. Applications of Activated Sludge Models has been prepared in celebration of 25 years of ASM1 and in tribute to the activated sludge modelling pioneer, the late Professor G.v.R. Marrais. It consists of a dozen of practical applications for ASM models to model development, plant optimization, extension, upgrade, retrofit and troubleshooting, carried out by the members of the Delft modelling group over the last two decades.




Activated Sludge


Book Description

In the past, industrial wastewater treatment primarily focused on the removal of BOD and suspended solids. In recent years, however, the focus has changed to aquatic toxicity, priority pollutants, and volatile organics. This required changes in how we design and operate biological treatment plants. Many existing plants must be retrofitted. New approaches to meet new requirements are discussed in detail. The authors, with a combined experience of sixty years, have presented case studies for a wide variety of industrial wastewaters including pulp and paper, food processing, chemical and pharmaceuticals, and textile wastewaters. Data interpretation and process design are developed through the use of seventeen examples. Procedures for the laboratory and pilot plant generation of process design data are presented. Emphasis is placed on meeting the many new regulations governing industrial wastewater discharges.




Process Control of Activated Sludge Plants by Microscopic Investigation


Book Description

This title is only available as a free copy to download from the WaterWiki. To download your free copy of the eBook, click here. The manual can be used independantly but when used in combination with the CD-ROM, it makes a unique tool for process operators to diagnose and solve operational problems. It is also a valuable educational and training package for universities and post experience courses. Click here for more details about the CD-ROM Process stability and final effluent quality largely depend upon the composition of the biomass in an activated sludge plant. Operational problems such as bulking and scum formation occur when the wrong micro-organisms are dominating the sludge population. Microscopic sludge investigation is therefore essential for process control and stable plant operation. The manual outlines the theoretical framework, extensively illustrated with full-colour micrographs. Contents Microscopy Microscopic sludge investigation Characteristics of activated sludge flocs Filamentous micro-organisms Protozoa and metazoa Conclusions of microscopic sludge investigation The activated sludge process Operational problems Bulking sludge Scum formation




Guidelines for Using Activated Sludge Models


Book Description

Mathematical modelling of activated sludge systems is used widely for plant design, optimisation, training, controller design and research. The quality of simulation studies varies depending on the project objectives, finances and expertise available. Consideration has to be given to the model accuracy and the amount of time required carrying out a simulation study to produce the desired accuracy. Inconsistent approaches and insufficient documentation make quality assessment and comparison of simulation results difficult or almost impossible. A general framework for the application of activated sludge models is needed in order to overcome these obstacles. The genesis of the Good Modelling Practice (GMP) Task Group lies in a workshop held at the 4th IWA World Water Congress in Marrakech, Morocco where members of research groups active in wastewater treatment modelling came together to develop plans to synthesize the best practices of modellers from all over the world. The most cited protocols were included in the work, amongst others from: HSG (Hochschulgruppe), STOWA, BIOMATH and WERF. The goal of the group is to set up an internationally accepted framework to deal with the ASM type models in practice. This framework shall make modelling more straightforward and systematic to use especially for practitioners and consultants. Additionally, it shall help to define quality levels for simulation results, a procedure to assess this quality and to assist in the proper use of the models. The framework will describe a methodology for goal-oriented application of activated sludge models demonstrated by means of a concise guideline about the procedure of a simulation study and some illustrative case studies. The case studies shall give examples for the required data quality and quantity and the effort for calibration/validation with respect to a defined goal. The final report will include an extended appendix with additional information and details of methodologies. Additional features in Guidelines for Using Activated Sludge Models include a chapter on modelling industrial wastewater, an overview on the history, current practice and future of activated sludge modelling and several explanatory case studies. It can be used as an introductory book to learn about Good Modelling Practice (GMP) in activated sludge modelling and will be of special interest for process engineers who have no prior knowledge of modelling or for lecturers who need a textbook for their students. The STR can also be used as a modelling reference book and includes an extended appendix with additional information and details of methodologies. Scientific and Technical Report No. 22