Advanced Applications of Python Data Structures and Algorithms


Book Description

Data structures are essential principles applicable to any programming language in computer science. Data structures may be studied more easily with Python than with any other programming language because of their interpretability, interactivity, and object-oriented nature. Computers may store and process data at an extraordinary rate and with outstanding accuracy. Therefore, it is of the utmost importance that the data is efficiently stored and is able to be accessed promptly. In addition, data processing should take as little time as feasible while maintaining the highest possible level of precision. Advanced Applications of Python Data Structures and Algorithms assists in understanding and applying the fundamentals of data structures and their many implementations and discusses the advantages and disadvantages of various data structures. Covering key topics such as Python, linked lists, datatypes, and operators, this reference work is ideal for industry professionals, computer scientists, researchers, academicians, scholars, practitioners, instructors, and students.




Python Data Structures and Algorithms


Book Description

Implement classic and functional data structures and algorithms using Python About This Book A step by step guide, which will provide you with a thorough discussion on the analysis and design of fundamental Python data structures. Get a better understanding of advanced Python concepts such as big-o notation, dynamic programming, and functional data structures. Explore illustrations to present data structures and algorithms, as well as their analysis, in a clear, visual manner. Who This Book Is For The book will appeal to Python developers. A basic knowledge of Python is expected. What You Will Learn Gain a solid understanding of Python data structures. Build sophisticated data applications. Understand the common programming patterns and algorithms used in Python data science. Write efficient robust code. In Detail Data structures allow you to organize data in a particular way efficiently. They are critical to any problem, provide a complete solution, and act like reusable code. In this book, you will learn the essential Python data structures and the most common algorithms. With this easy-to-read book, you will be able to understand the power of linked lists, double linked lists, and circular linked lists. You will be able to create complex data structures such as graphs, stacks and queues. We will explore the application of binary searches and binary search trees. You will learn the common techniques and structures used in tasks such as preprocessing, modeling, and transforming data. We will also discuss how to organize your code in a manageable, consistent, and extendable way. The book will explore in detail sorting algorithms such as bubble sort, selection sort, insertion sort, and merge sort. By the end of the book, you will learn how to build components that are easy to understand, debug, and use in different applications. Style and Approach The easy-to-read book with its fast-paced nature will improve the productivity of Python programmers and improve the performance of Python applications.




Advanced Algorithms and Data Structures


Book Description

Advanced Algorithms and Data Structures introduces a collection of algorithms for complex programming challenges in data analysis, machine learning, and graph computing. Summary As a software engineer, you’ll encounter countless programming challenges that initially seem confusing, difficult, or even impossible. Don’t despair! Many of these “new” problems already have well-established solutions. Advanced Algorithms and Data Structures teaches you powerful approaches to a wide range of tricky coding challenges that you can adapt and apply to your own applications. Providing a balanced blend of classic, advanced, and new algorithms, this practical guide upgrades your programming toolbox with new perspectives and hands-on techniques. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Can you improve the speed and efficiency of your applications without investing in new hardware? Well, yes, you can: Innovations in algorithms and data structures have led to huge advances in application performance. Pick up this book to discover a collection of advanced algorithms that will make you a more effective developer. About the book Advanced Algorithms and Data Structures introduces a collection of algorithms for complex programming challenges in data analysis, machine learning, and graph computing. You’ll discover cutting-edge approaches to a variety of tricky scenarios. You’ll even learn to design your own data structures for projects that require a custom solution. What's inside Build on basic data structures you already know Profile your algorithms to speed up application Store and query strings efficiently Distribute clustering algorithms with MapReduce Solve logistics problems using graphs and optimization algorithms About the reader For intermediate programmers. About the author Marcello La Rocca is a research scientist and a full-stack engineer. His focus is on optimization algorithms, genetic algorithms, machine learning, and quantum computing. Table of Contents 1 Introducing data structures PART 1 IMPROVING OVER BASIC DATA STRUCTURES 2 Improving priority queues: d-way heaps 3 Treaps: Using randomization to balance binary search trees 4 Bloom filters: Reducing the memory for tracking content 5 Disjoint sets: Sub-linear time processing 6 Trie, radix trie: Efficient string search 7 Use case: LRU cache PART 2 MULTIDEMENSIONAL QUERIES 8 Nearest neighbors search 9 K-d trees: Multidimensional data indexing 10 Similarity Search Trees: Approximate nearest neighbors search for image retrieval 11 Applications of nearest neighbor search 12 Clustering 13 Parallel clustering: MapReduce and canopy clustering PART 3 PLANAR GRAPHS AND MINIMUM CROSSING NUMBER 14 An introduction to graphs: Finding paths of minimum distance 15 Graph embeddings and planarity: Drawing graphs with minimal edge intersections 16 Gradient descent: Optimization problems (not just) on graphs 17 Simulated annealing: Optimization beyond local minima 18 Genetic algorithms: Biologically inspired, fast-converging optimization




Hands-On Data Structures and Algorithms with Python


Book Description

Learn to implement complex data structures and algorithms using Python Key FeaturesUnderstand the analysis and design of fundamental Python data structuresExplore advanced Python concepts such as Big O notation and dynamic programmingLearn functional and reactive implementations of traditional data structuresBook Description Data structures allow you to store and organize data efficiently. They are critical to any problem, provide a complete solution, and act like reusable code. Hands-On Data Structures and Algorithms with Python teaches you the essential Python data structures and the most common algorithms for building easy and maintainable applications. This book helps you to understand the power of linked lists, double linked lists, and circular linked lists. You will learn to create complex data structures, such as graphs, stacks, and queues. As you make your way through the chapters, you will explore the application of binary searches and binary search trees, along with learning common techniques and structures used in tasks such as preprocessing, modeling, and transforming data. In the concluding chapters, you will get to grips with organizing your code in a manageable, consistent, and extendable way. You will also study how to bubble sort, selection sort, insertion sort, and merge sort algorithms in detail. By the end of the book, you will have learned how to build components that are easy to understand, debug, and use in different applications. You will get insights into Python implementation of all the important and relevant algorithms. What you will learnUnderstand object representation, attribute binding, and data encapsulationGain a solid understanding of Python data structures using algorithmsStudy algorithms using examples with pictorial representationLearn complex algorithms through easy explanation, implementing PythonBuild sophisticated and efficient data applications in PythonUnderstand common programming algorithms used in Python data scienceWrite efficient and robust code in Python 3.7Who this book is for This book is for developers who want to learn data structures and algorithms in Python to write complex and flexible programs. Basic Python programming knowledge is expected.




Data Structures and Algorithms in Python


Book Description

Based on the authors' market leading data structures books in Java and C++, this book offers a comprehensive, definitive introduction to data structures in Python by authoritative authors. Data Structures and Algorithms in Python is the first authoritative object-oriented book available for Python data structures. Designed to provide a comprehensive introduction to data structures and algorithms, including their design, analysis, and implementation, the text will maintain the same general structure as Data Structures and Algorithms in Java and Data Structures and Algorithms in C++. Begins by discussing Python's conceptually simple syntax, which allows for a greater focus on concepts. Employs a consistent object-oriented viewpoint throughout the text. Presents each data structure using ADTs and their respective implementations and introduces important design patterns as a means to organize those implementations into classes, methods, and objects. Provides a thorough discussion on the analysis and design of fundamental data structures. Includes many helpful Python code examples, with source code provided on the website. Uses illustrations to present data structures and algorithms, as well as their analysis, in a clear, visual manner. Provides hundreds of exercises that promote creativity, help readers learn how to think like programmers, and reinforce important concepts. Contains many Python-code and pseudo-code fragments, and hundreds of exercises, which are divided into roughly 40% reinforcement exercises, 40% creativity exercises, and 20% programming projects.




Advanced Data Structures


Book Description

Advanced Data Structures presents a comprehensive look at the ideas, analysis, and implementation details of data structures as a specialized topic in applied algorithms. Data structures are how data is stored within a computer, and how one can go about searching for data within. This text examines efficient ways to search and update sets of numbers, intervals, or strings by various data structures, such as search trees, structures for sets of intervals or piece-wise constant functions, orthogonal range search structures, heaps, union-find structures, dynamization and persistence of structures, structures for strings, and hash tables. This is the first volume to show data structures as a crucial algorithmic topic, rather than relegating them as trivial material used to illustrate object-oriented programming methodology, filling a void in the ever-increasing computer science market. Numerous code examples in C and more than 500 references make Advanced Data Structures an indispensable text. topic. Numerous code examples in C and more than 500 references make Advanced Data Structures an indispensable text.




Data Structures and Algorithms with Python


Book Description

This textbook explains the concepts and techniques required to write programs that can handle large amounts of data efficiently. Project-oriented and classroom-tested, the book presents a number of important algorithms supported by examples that bring meaning to the problems faced by computer programmers. The idea of computational complexity is also introduced, demonstrating what can and cannot be computed efficiently so that the programmer can make informed judgements about the algorithms they use. Features: includes both introductory and advanced data structures and algorithms topics, with suggested chapter sequences for those respective courses provided in the preface; provides learning goals, review questions and programming exercises in each chapter, as well as numerous illustrative examples; offers downloadable programs and supplementary files at an associated website, with instructor materials available from the author; presents a primer on Python for those from a different language background.




Geospatial Application Development Using Python Programming


Book Description

Academics and researchers currently grapple with a pressing issue; the demand for precise and insightful geographical information has surged across various fields, encompassing urban planning, environmental monitoring, agriculture, and disaster management. This surge has revealed a substantial knowledge gap, underscoring the need for effective applications that can bridge the gap between cutting-edge technologies and practical usage. Geospatial Application Development Using Python Programming emerges as the definitive solution to this challenge. This comprehensive book equips academics, researchers, and professionals with the essential tools and insights required to leverage the capabilities of Python programming in the realm of spatial analysis. It goes beyond merely connecting these two realms; it actively fosters their collaboration. By advancing knowledge in spatial sciences and highlighting Python's pivotal role in data analysis and application development, this book plays a crucial part in addressing the challenge of effectively harnessing geographical data.




Ethics, Machine Learning, and Python in Geospatial Analysis


Book Description

In geospatial analysis, navigating the complexities of data interpretation and analysis presents a formidable challenge. Traditional methods often need to efficiently handle vast volumes of geospatial data while providing insightful and actionable results. Scholars and practitioners grapple with manual or rule-based approaches, hindering progress in understanding and addressing pressing issues such as climate change, urbanization, and resource management. Ethics, Machine Learning, and Python in Geospatial Analysis offers a solution to the challenges faced by leveraging the extensive library support and user-friendly interface of Python and machine learning. The book’s meticulously crafted chapters guide readers through the intricacies of Python programming and its application in geospatial analysis, from fundamental concepts to advanced techniques.