Advanced Electric Circuits


Book Description

Advanced Electric Circuits focuses on circuit analysis, including amplification, oscillations, capacitance, and circuit elements. The publication first offers information on the symbolic method of analysis, network theorems, bridge networks, and tuned circuits and filters. The text then takes a look at polyphase circuits, non-sinusoidal and transient excitation, and valves as circuit elements. Discussions focus on amplification, resistance-capacitance amplifiers, feedback, negative feedback amplifiers, cathode follower, low-power oscillations, and practical design of feedback circuits. The manuscript elaborates on transistors as circuit elements and elementary transmission-line analysis. Topics include ideal small-signal current amplifiers, small signal performance of the common emitter amplifier, comparative table of symbols, and typical examination questions. The publication is a dependable reference for students and readers interested in electric circuits.




Advanced Electrical Circuit Analysis


Book Description

This study guide is designed for students taking advanced courses in electrical circuit analysis. The book includes examples, questions, and exercises that will help electrical engineering students to review and sharpen their knowledge of the subject and enhance their performance in the classroom. Offering detailed solutions, multiple methods for solving problems, and clear explanations of concepts, this hands-on guide will improve student’s problem-solving skills and basic understanding of the topics covered in electric circuit analysis courses.




Advanced Electronic Circuits


Book Description

In the earlier stages of integrated circuit design, analog circuits consisted simply of type 741 operational amplifiers, and digital circuits of 7400-type gates. Today's designers must choose from a much larger and rapidly increasing variety of special integrated circuits marketed by a dynamic and creative industry. Only by a proper selection from this wide range can an economical and competitive solution be found to a given problem. For each individual case the designer must decide which parts of a circuit are best implemented by analog circuitry, which by conventional digital circuitry and which sections could be microprocessor controlled. In order to facilitate this decision for the designer who is not familiar with all these subjects, we have arranged the book so as to group the different circuits according to their field of application. Each chapter is thus written to stand on its own, with a minimum of cross-references. To enable the reader to proceed quickly from an idea to a working circuit, we discuss, for a large variety of problems, typical solutions, the applicability of which has been proved by thorough experimental investigation. Our thanks are here due to Prof. Dr. D. Seitzer for the provision of excellent laboratory facilities. The subject is extensive and the material presented has had to be limited. For this reason, we have omitted elementary circuit design, so that the book addresses the advanced student who has some back ground in electronics, and the practising engineer and scientist.




Concepts in Electric Circuits


Book Description




Linear and Nonlinear Circuits: Basic & Advanced Concepts


Book Description

This book provides readers with the necessary background information and advanced concepts in the field of circuits, at the crossroads between physics, mathematics and system theory. It covers various engineering subfields, such as electrical devices and circuits, and their electronic counterparts. Based on the idea that a modern university course should provide students with conceptual tools to understand the behavior of both linear and nonlinear circuits, to approach current problems posed by new, cutting-edge devices and to address future developments and challenges, the book places equal emphasis on linear and nonlinear, two‐terminal and multi‐terminal, as well as active and passive circuit components. The theory is developed systematically, starting with the simplest circuits (linear, time-invariant and resistive) and providing food for thought on nonlinear circuits, potential functions, linear algebra and geometrical interpretations of selected results. Contents are organized into a set of first‐level and a set of advanced‐level topics. The book is rich in examples and includes numerous solved problems. Further topics, such as signal processing and modeling of non-electric physical phenomena (e.g., hysteresis or biological oscillators) will be discussed in volume 2.




Electric Circuits and Machines


Book Description

Majors and non-majors in electricity will benefit from this easy-to-understand and highly illustrated introduction to DC and AC electrical theory, circuits, and equipment. The only prequisites are algebra and a basic knowledge of trigonometry. This updated edition reflects changes in industry resulting from increasing computerization of electrical equipment. Modern solid-state components are covered in appropriate sections throughout the book. These components are especially featured in the area of industrial controls.




Advanced Electronic Circuits


Book Description

This research book volume offers an important learning opportunity with insights into a variety of emerging electronic circuit aspects, such as new materials, energy harvesting architectures, and compressive sensing technique. Advanced circuit technologies are extremely powerful and developed rapidly. They change industry. They change lives. And we know they can change the world. The exhibition on these new and exciting topics will benefit readers in related fields.




Fast Analytical Techniques for Electrical and Electronic Circuits


Book Description

The only method of circuit analysis known to most engineers and students is nodal or loop analysis. Although this works well for obtaining numerical solutions, it is almost useless for obtaining analytical solutions in all but the simplest cases. In this unusual 2002 book, Vorpérian describes remarkable alternative techniques to solve, almost by inspection, complicated linear circuits in symbolic form and obtain meaningful analytical answers for any transfer function or impedance. Although not intended to replace traditional computer-based methods, these techniques provide engineers with a powerful set of tools for tackling circuit design problems. They also have great value in enhancing students' understanding of circuit operation, making this an ideal course book, and numerous problems and worked examples are included. Originally developed by Professor David Middlebrook and others at Caltech (California Institute of Technology), the techniques described here are now widely taught at institutions and companies around the world.




AC Electrical Circuit Analysis


Book Description

This study guide is designed for students taking courses in electrical circuit analysis. The textbook includes examples, questions, and exercises that will help electrical engineering students to review and sharpen their knowledge of the subject and enhance their performance in the classroom. Offering detailed solutions, multiple methods for solving problems, and clear explanations of concepts, this hands-on guide will improve student’s problem-solving skills and basic understanding of the topics covered in electric circuit analysis courses. Exercises cover a wide selection of basic and advanced questions and problems Categorizes and orders the problems based on difficulty level, hence suitable for both knowledgeable and under-prepared students Provides detailed and instructor-recommended solutions and methods, along with clear explanations Can be used along with the core textbooks in AC circuit analysis and advanced electrical circuit analysis




Electrical Circuits


Book Description

Relevant applications to electronics, telecommunications and power systems are included in a comprehensive introduction to the theory of electronic circuits for physical science students.