Advanced Material and Device Applications with Germanium


Book Description

Germanium is an elemental semiconductor, which played an important role in the birth of the semiconductor but soon was replaced with silicon. However, germanium is poised to make a remarkable comeback in the semiconductor industry. With this increasing attention, this book describes the fundamental aspects of germanium and its applications. The contributing authors are experts in their field with great in-depth knowledge. The authors strongly feel that this contribution might be of interest to readers and help to expand the scope of their knowledge.




Germanium-Based Technologies


Book Description

Germanium is a semiconductor material that formed the basis for the development of transistor technology. Although the breakthrough of planar technology and integrated circuits put silicon in the foreground, in recent years there has been a renewed interest in germanium, which has been triggered by its strong potential for deep submicron (sub 45 nm) technologies. Germanium-Based technologies: From Materials to Devices is the first book to provide a broad, in-depth coverage of the field, including recent advances in Ge-technology and the fundamentals in material science, device physics and semiconductor processing. The contributing authors are international experts with a world-wide recognition and involved in the leading research in the field. The book also covers applications and the use of Ge for optoelectronics, detectors and solar cells. An ideal reference work for students and scientists working in the field of physics of semiconductor devices and materials, as well as for engineers in research centres and industry. Both the newcomer and the expert should benefit from this unique book. - State-of-the-art information available for the first time as an all-in-source - Extensive reference list making it an indispensable reference book - Broad coverage from fundamental aspects up to industrial applications




Nanostructured and Advanced Materials for Applications in Sensor, Optoelectronic and Photovoltaic Technology


Book Description

The principal aim of this NATO Advanced Study Institute (ASI) "Nanostructured and Advanced Materials for Applications in Sensor, Optoelectronic and Photovoltaic Technology" was to present a contemporary overview of the field of nanostructured and advanced electronic materials. Nanotechnology is an emerging scientific field receiving significant worldwide attention. On a nanometer scale, materials or structures may possess new and unique physical properties. Some of these are now known to the scientific community, but there may well be many properties not yet known to us, rendering it as a fascinating area of research and a suitable subject for a NATO ASI. Yet another aspect of the field is the possibility for creating meta-stable phases with unconventional properties and the ultra-miniaturization of current devices, sensors, and machines. Such nanotechnological and related advanced materials have an extremely wide range of potential applications, viz. nanoscale electronics, sensors, optoelectronics, photonics, nano-biological systems, na- medicine, energy storage systems, etc. This is a wide-ranging subject area and therefore requires the formation of multi-disciplinary teams of physicists, chemists, materials scientists, engineers, molecular biologists, pharmacologists, and others to work together on the synthesis and processing of materials and structures, the understanding of their physical properties, the design and fabrication of devices, etc. Hence, in formulating our ASI, we adopted an int- disciplinary approach, bringing together recognised experts in the various fields while retaining a level of treatment accessible to those active in specific individual areas of research and development.




Advanced Materials for Future Terahertz Devices, Circuits and Systems


Book Description

This book highlights the properties of advanced materials suitable for realizing THz devices, circuits and systems, and processing and fabrication technologies associated with those. It also discusses some measurement techniques exclusively effective for THz regime, newly explored materials and recently developed solid-state devices for efficient generation and detection of THz waves, potentiality of metamaterials for implementing THz passive circuits and bio-sensors, and finally the future of silicon as the base material of THz devices. The book especially focuses on the recent advancements and several research issues related to THz materials and devices; it also discusses theoretical, experimental, established, and validated empirical works on these topics.







Advanced Ceramic Materials


Book Description

Ceramic materials are inorganic and non-metallic porcelains, tiles, enamels, cements, glasses and refractory bricks. Today, "ceramics" has gained a wider meaning as a new generation of materials influence on our lives; electronics, computers, communications, aerospace and other industries rely on a number of their uses. In general, advanced ceramic materials include electro-ceramics, optoelectronic-ceramics, superconductive ceramics and the more recent development of piezoelectric and dielectric ceramics. They can be considered for their features including mechanical properties, decorative textures, environmental uses, energy applications, as well as their usage in bio-ceramics, composites, functionally graded materials, intelligent ceramics and so on. Advanced Ceramic Materials brings together a group of subject matter experts who describe innovative methodologies and strategies adopted in the research and development of the advanced ceramic materials. The book is written for readers from diverse backgrounds across chemistry, physics, materials science and engineering, medical science, pharmacy, environmental technology, biotechnology, and biomedical engineering. It offers a comprehensive view of cutting-edge research on ceramic materials and technologies. Divided into 3 parts concerning design, composites and functionality, the topics discussed include: Chemical strategies of epitaxial oxide ceramics nanomaterials Biphasic, triphasic and multiphasic calcium orthophosphates Microwave assisted processing of advanced ceramic composites Continuous fiber reinforced ceramic matrix composites Yytria and magnesia doped alumina ceramic Oxidation induced crack healing SWCNTs vs MWCNTs reinforcement agents Organic and inorganic wastes in clay brick production Functional tantalum oxides Application of silver tin research on hydroxyapatite




Metal Impurities in Silicon- and Germanium-Based Technologies


Book Description

This book provides a unique review of various aspects of metallic contamination in Si and Ge-based semiconductors. It discusses all of the important metals including their origin during crystal and/or device manufacturing, their fundamental properties, their characterization techniques and their impact on electrical devices’ performance. Several control and possible gettering approaches are addressed. The book offers a valuable reference guide for all researchers and engineers studying advanced and state-of-the-art micro- and nano-electronic semiconductor devices and circuits. Adopting an interdisciplinary approach, it combines perspectives from e.g. material science, defect engineering, device processing, defect and device characterization, and device physics and engineering.




Radiation Effects in Advanced Semiconductor Materials and Devices


Book Description

This wide-ranging book summarizes the current knowledge of radiation defects in semiconductors, outlining the shortcomings of present experimental and modelling techniques and giving an outlook on future developments. It also provides information on the application of sensors in nuclear power plants.




Advanced Materials Innovation


Book Description

Through detailed case studies of the most important advanced material creations of the latter 20th and early 21st century, the author explores the role of the field of advanced materials in the technological and economic activity today, with implications to the innovation process in general. A comprehensive study that encompasses the three major categories of advanced material technologies, i.e., Structural Materials (metals and polymers), Functional Materials (transistor, microchip and semiconductor laser) and Hybrid and New Forms of Matter (liquid crystals and nanomaterials). Extensive use of primary sources, including unpublished interviews with the scientists, engineers, and entrepreneurs on the front lines of advanced materials creation Original approach to case study narrative, emphasizing interaction between the advanced material process, perceived risk and directing and accelerating breakthrough technology




Silicon Germanium Materials and Devices - A Market and Technology Overview to 2006


Book Description

The first edition of Silicon Germanium Materials & Devices - A Market & Technology Overview to 2006 examines the development of the silicon germanium business over a six-year period 2001 to 2006. It analyses the trends in markets, technologies and industry structure and profiles all the major players. It is specifically aimed at users and manufacturers of substrates, epiwafers, equipment and devices. The analysis includes a competitive assessment of the market of silicon germanium vs. gallium arsenide, indium phosphide vs. other forms of silicon. Silicon Germanium Materials & Devices - A Market & Technology Overview to 2006 is designed to assist with business plans, R&D and manufacturing strategies. It will be an indispensable aid for managers responsible for business development, technology assessment and market research. The report examines the rapid development of silicon germanium from an R&D curiosity to production status. An extensive treatment from materials through processes to devices and applications it encapsulates the entire silicon germanium business of today and assesses future directions. For a PDF version of the report please call Tina Enright on +44 (0) 1865 843008 for price details.