Advanced Materials Science and Engineering of Carbon


Book Description

Carbon materials are exceptionally diverse in their preparation, structure, texture, and applications. In Advanced Materials Science and Engineering of Carbon, noted carbon scientist Michio Inagaki and his coauthors cover the most recent advances in carbon materials, including new techniques and processes, carbon materials synthesis, and up-to-date descriptions of current carbon-based materials, trends and applications. Beginning with the synthesis and preparation of nanocarbons, carbon nanotubes, and graphenes, the book then reviews recently developed carbonization techniques, such as templating, electrospinning, foaming, stress graphitization, and the formation of glass-like carbon. The last third of the book is devoted to applications, featuring coverage of carbon materials for energy storage, electrochemical capacitors, lithium-ion rechargeable batteries, and adsorptive storage of hydrogen and methane for environmental protection, photocatalysis, spilled oil recovery, and nuclear applications of isotropic high-density graphite.




Materials Science and Engineering


Book Description

Building on the success of previous editions, this book continues to provide engineers with a strong understanding of the three primary types of materials and composites, as well as the relationships that exist between the structural elements of materials and their properties. The relationships among processing, structure, properties, and performance components for steels, glass-ceramics, polymer fibers, and silicon semiconductors are explored throughout the chapters. The discussion of the construction of crystallographic directions in hexagonal unit cells is expanded. At the end of each chapter, engineers will also find revised summaries and new equation summaries to reexamine key concepts.




Advanced Strength of Materials


Book Description

Four decades ago, J.P. Den Hartog, then Professor of Mechanical Engineering at Massachusetts Institute of Technology, wrote Strength of Materials, an elementary text that still enjoys great popularity in engineering schools throughout the world. Widely used as a classroom resource, it has also become a favorite reference and refresher on the subject among engineers everywhere. This is the first paperback edition of an equally successful text by this highly respected engineer and author. Advanced Strength of Materials takes this important subject into areas of greater difficulty, masterfully bridging its elementary aspects and its most formidable advanced reaches. The book reflects Den Hartog's impressive talent for making lively, discursive and often witty presentations of his subject, and his unique ability to combine the scholarly insight of a distinguished scientist with the practical, problem-solving orientation of an experienced industrial engineer. The concepts here explored in depth include torsion, rotating disks, membrane stresses in shells, bending of flat plates, beams on elastic foundation, the two-dimensional theory of elasticity, the energy method and buckling. The presentation is aimed at the student who has a one-semester course in elementary strength of materials. The book includes an especially thorough and valuable section of problems and answers which give both students and professionals practice in techniques and clear illustrations of applications.




Advanced Computational Methods in Mechanical and Materials Engineering


Book Description

This book provides in-depth knowledge to solve engineering, geometrical, mathematical, and scientific problems with the help of advanced computational methods with a focus on mechanical and materials engineering. Divided into three subsections covering design and fluids, thermal engineering and materials engineering, each chapter includes exhaustive literature review along with thorough analysis and future research scope. Major topics covered pertains to computational fluid dynamics, mechanical performance, design, and fabrication including wide range of applications in industries as automotive, aviation, electronics, nuclear and so forth. Covers computational methods in design and fluid dynamics with a focus on computational fluid dynamics Explains advanced material applications and manufacturing in labs using novel alloys and introduces properties in material Discusses fabrication of graphene reinforced magnesium metal matrix for orthopedic applications Illustrates simulation and optimization gear transmission, heat sink and heat exchangers application Provides unique problem-solution approach including solutions, methodology, experimental setup, and results validation This book is aimed at researchers, graduate students in mechanical engineering, computer fluid dynamics,fluid mechanics, computer modeling, machine parts, and mechatronics.




Advanced Materials


Book Description

Advanced Materials gives an unique insight into the specialized materials that are required to run our modern society. Provided within are the fundamental theories and applications of advanced materials for metals, glasses, polymers, composites, and nanomaterials. This book is ideal for scientists and engineers of materials science, chemistry, physics, and engineering, and students of these disciplines.




Engineering Materials 2


Book Description

Provides a thorough explanation of the basic properties of materials; of how these can be controlled by processing; of how materials are formed, joined and finished; and of the chain of reasoning that leads to a successful choice of material for a particular application. The materials covered are grouped into four classes: metals, ceramics, polymers and composites. Each class is studied in turn, identifying the families of materials in the class, the microstructural features, the processes or treatments used to obtain a particular structure and their design applications. The text is supplemented by practical case studies and example problems with answers, and a valuable programmed learning course on phase diagrams.




Materials Science and Engineering for the 1990s


Book Description

Materials science and engineering (MSE) contributes to our everyday lives by making possible technologies ranging from the automobiles we drive to the lasers our physicians use. Materials Science and Engineering for the 1990s charts the impact of MSE on the private and public sectors and identifies the research that must be conducted to help America remain competitive in the world arena. The authors discuss what current and future resources would be needed to conduct this research, as well as the role that industry, the federal government, and universities should play in this endeavor.




Materials Science and Engineering of Carbon


Book Description

Materials Science and Engineering of Carbon: Characterization discusses 12 characterization techniques, focusing on their application to carbon materials, including X-ray diffraction, X-ray small-angle scattering, transmission electron microscopy, Raman spectroscopy, scanning electron microscopy, image analysis, X-ray photoelectron spectroscopy, magnetoresistance, electrochemical performance, pore structure analysis, thermal analyses, and quantification of functional groups. Each contributor in the book has worked on carbon materials for many years, and their background and experience will provide guidance on the development and research of carbon materials and their further applications. - Focuses on characterization techniques for carbon materials - Authored by experts who are considered specialists in their respective techniques - Presents practical results on various carbon materials, including fault results, which will help readers understand the optimum conditions for the characterization of carbon materials




Advanced Materials, Structures and Mechanical Engineering


Book Description

The International Conference on Advanced Materials, Structures and Mechanical Engineering 2015 (ICAMSME 2015) was held on May 29-31, Incheon, South-Korea. The conference was attended by scientists, scholars, engineers and students from universities, research institutes and industries all around the world to present ongoing research activities. This




Mechanical Alloying


Book Description

Unique in bringing about a solid-state reaction at room temperature, mechanical alloying produces powders and compounds difficult or impossible to obtain by conventional techniques. Immediate and cost-effective industry applications of the resultant advanced materials are in cutting tools and high performance aerospace products such as metal matrix armor and turbine blades. The book is a guided introduction to mechanical alloying, covering material requirements equipment, processing, and engineering properties and characteristics of the milled powders. Chapters 3 and 4 treat the fabrication of nanophase materials and nanophase composite materials. Chapter 8 provides extensive coverage of metallic glass substances.This book is ideal for materials scientists in industry and in research, design, processing, and plant engineers in the cutting tools and aerospace industries as well as senior level students in metallurgical and mechanical materials engineering. The book will especially benefit metallurgists unacquainted with ball milling fabrication.