Advanced Optimization Applications in Engineering


Book Description

In the ever-evolving landscape of engineering, a pressing challenge looms large-the need to navigate the complexities of modern problems with precision and efficiency. As industries grapple with an array of intricate issues, from sustainable materials to resilient infrastructure, the demand for optimal solutions has never been more pronounced. Traditional approaches are often inadequate, prompting the search for advanced optimization techniques capable of unraveling the intricacies inherent in engineering systems. The problem at hand is clear: how can engineers, researchers, and practitioners harness cutting-edge methodologies to address the multifaceted challenges shaping our technological future? Advanced Optimization Applications in Engineering, is a definitive guide poised to revolutionize problem-solving in civil engineering. This book offers a comprehensive exploration of state-of-the-art optimization algorithms and their transformative applications. By delving into genetic algorithms, particle swarm optimization, neural networks, and other metaheuristic strategies, this collection provides a roadmap for automating design processes, reducing costs, and unlocking innovative solutions. The chapters not only introduce these advanced techniques but also showcase their practical implementation across diverse engineering domains, making this book an indispensable resource for those seeking to stay at the forefront of technological advancements.




Applications of Advanced Optimization Techniques in Industrial Engineering


Book Description

This book provides different approaches used to analyze, draw attention, and provide an understanding of the advancements in the optimization field across the globe. It brings all of the latest methodologies, tools, and techniques related to optimization and industrial engineering into a single volume to build insights towards the latest advancements in various domains. Applications of Advanced Optimization Techniques in Industrial Engineering includes the basic concept of optimization, techniques, and applications related to industrial engineering. Concepts are introduced in a sequential way along with explanations, illustrations, and solved examples. The book goes on to explore applications of operations research and covers empirical properties of a variety of engineering disciplines. It presents network scheduling, production planning, industrial and manufacturing system issues, and their implications in the real world. The book caters to academicians, researchers, professionals in inventory analytics, business analytics, investment managers, finance firms, storage-related managers, and engineers working in engineering industries and data management fields.




Advanced Optimization Applications in Engineering


Book Description

In the ever-evolving landscape of engineering, a pressing challenge looms large—the need to navigate the complexities of modern problems with precision and efficiency. As industries grapple with an array of intricate issues, from sustainable materials to resilient infrastructure, the demand for optimal solutions has never been more pronounced. Traditional approaches are often inadequate, prompting the search for advanced optimization techniques capable of unraveling the intricacies inherent in engineering systems. The problem at hand is clear: how can engineers, researchers, and practitioners harness cutting-edge methodologies to address the multifaceted challenges shaping our technological future? Advanced Optimization Applications in Engineering, is a definitive guide poised to revolutionize problem-solving in civil engineering. This book offers a comprehensive exploration of state-of-the-art optimization algorithms and their transformative applications. By delving into genetic algorithms, particle swarm optimization, neural networks, and other metaheuristic strategies, this collection provides a roadmap for automating design processes, reducing costs, and unlocking innovative solutions. The chapters not only introduce these advanced techniques but also showcase their practical implementation across diverse engineering domains, making this book an indispensable resource for those seeking to stay at the forefront of technological advancements.




Advanced Optimization for Process Systems Engineering


Book Description

A unique text covering basic and advanced concepts of optimization theory and methods for process systems engineers. With examples illustrating key concepts and algorithms, and exercises involving theoretical derivations, numerical problems and modeling systems, it is ideal for single-semester, graduate courses in process systems engineering.




Jaya: An Advanced Optimization Algorithm and its Engineering Applications


Book Description

This book introduces readers to the “Jaya” algorithm, an advanced optimization technique that can be applied to many physical and engineering systems. It describes the algorithm, discusses its differences with other advanced optimization techniques, and examines the applications of versions of the algorithm in mechanical, thermal, manufacturing, electrical, computer, civil and structural engineering. In real complex optimization problems, the number of parameters to be optimized can be very large and their influence on the goal function can be very complicated and nonlinear in character. Such problems cannot be solved using classical methods and advanced optimization methods need to be applied. The Jaya algorithm is an algorithm-specific parameter-less algorithm that builds on other advanced optimization techniques. The application of Jaya in several engineering disciplines is critically assessed and its success compared with other complex optimization techniques such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Artificial Bee Colony (ABC), and other recently developed algorithms.




Advances and Trends in Optimization with Engineering Applications


Book Description

Optimization is of critical importance in engineering. Engineers constantly strive for the best possible solutions, the most economical use of limited resources, and the greatest efficiency. As system complexity increases, these goals mandate the use of state-of-the-art optimization techniques. In recent years, the theory and methodology of optimization have seen revolutionary improvements. Moreover, the exponential growth in computational power, along with the availability of multicore computing with virtually unlimited memory and storage capacity, has fundamentally changed what engineers can do to optimize their designs. This is a two-way process: engineers benefit from developments in optimization methodology, and challenging new classes of optimization problems arise from novel engineering applications. Advances and Trends in Optimization with Engineering Applications reviews 10 major areas of optimization and related engineering applications, providing a broad summary of state-of-the-art optimization techniques most important to engineering practice. Each part provides a clear overview of a specific area and discusses a range of real-world problems. The book provides a solid foundation for engineers and mathematical optimizers alike who want to understand the importance of optimization methods to engineering and the capabilities of these methods.




Mechanical Design Optimization Using Advanced Optimization Techniques


Book Description

Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational costs. Mechanical Design Optimization Using Advanced Optimization Techniques presents a comprehensive review on latest research and development trends for design optimization of mechanical elements and devices. Using examples of various mechanical elements and devices, the possibilities for design optimization with advanced optimization techniques are demonstrated. Basic and advanced concepts of traditional and advanced optimization techniques are presented, along with real case studies, results of applications of the proposed techniques, and the best optimization strategies to achieve best performance are highlighted. Furthermore, a novel advanced optimization method named teaching-learning-based optimization (TLBO) is presented in this book and this method shows better performance with less computational effort for the large scale problems. Mechanical Design Optimization Using Advanced Optimization Techniques is intended for designers, practitioners, managers, institutes involved in design related projects, applied research workers, academics, and graduate students in mechanical and industrial engineering and will be useful to the industrial product designers for realizing a product as it presents new models and optimization techniques to make tasks easier, logical, efficient and effective. .




Engineering Optimization


Book Description

A Rigorous Mathematical Approach To Identifying A Set Of Design Alternatives And Selecting The Best Candidate From Within That Set, Engineering Optimization Was Developed As A Means Of Helping Engineers To Design Systems That Are Both More Efficient And Less Expensive And To Develop New Ways Of Improving The Performance Of Existing Systems.Thanks To The Breathtaking Growth In Computer Technology That Has Occurred Over The Past Decade, Optimization Techniques Can Now Be Used To Find Creative Solutions To Larger, More Complex Problems Than Ever Before. As A Consequence, Optimization Is Now Viewed As An Indispensable Tool Of The Trade For Engineers Working In Many Different Industries, Especially The Aerospace, Automotive, Chemical, Electrical, And Manufacturing Industries.In Engineering Optimization, Professor Singiresu S. Rao Provides An Application-Oriented Presentation Of The Full Array Of Classical And Newly Developed Optimization Techniques Now Being Used By Engineers In A Wide Range Of Industries. Essential Proofs And Explanations Of The Various Techniques Are Given In A Straightforward, User-Friendly Manner, And Each Method Is Copiously Illustrated With Real-World Examples That Demonstrate How To Maximize Desired Benefits While Minimizing Negative Aspects Of Project Design.Comprehensive, Authoritative, Up-To-Date, Engineering Optimization Provides In-Depth Coverage Of Linear And Nonlinear Programming, Dynamic Programming, Integer Programming, And Stochastic Programming Techniques As Well As Several Breakthrough Methods, Including Genetic Algorithms, Simulated Annealing, And Neural Network-Based And Fuzzy Optimization Techniques.Designed To Function Equally Well As Either A Professional Reference Or A Graduate-Level Text, Engineering Optimization Features Many Solved Problems Taken From Several Engineering Fields, As Well As Review Questions, Important Figures, And Helpful References.Engineering Optimization Is A Valuable Working Resource For Engineers Employed In Practically All Technological Industries. It Is Also A Superior Didactic Tool For Graduate Students Of Mechanical, Civil, Electrical, Chemical And Aerospace Engineering.




Optimization in Electrical Engineering


Book Description

This textbook provides students, researchers, and engineers in the area of electrical engineering with advanced mathematical optimization methods. Presented in a readable format, this book highlights fundamental concepts of advanced optimization used in electrical engineering. Chapters provide a collection that ranges from simple yet important concepts such as unconstrained optimization to highly advanced topics such as linear matrix inequalities and artificial intelligence-based optimization methodologies. The reader is motivated to engage with the content via numerous application examples of optimization in the area of electrical engineering. The book begins with an extended review of linear algebra that is a prerequisite to mathematical optimization. It then precedes with unconstrained optimization, convex programming, duality, linear matrix inequality, and intelligent optimization methods. This book can be used as the main text in courses such as Engineering Optimization, Convex Engineering Optimization, Advanced Engineering Mathematics and Robust Optimization and will be useful for practicing design engineers in electrical engineering fields. Author provided cases studies and worked examples are included for student and instructor use.




Advanced Optimization and Operations Research


Book Description

This textbook provides students with fundamentals and advanced concepts in optimization and operations research. It gives an overview of the historical perspective of operations research and explains its principal characteristics, tools, and applications. The wide range of topics covered includes convex and concave functions, simplex methods, post optimality analysis of linear programming problems, constrained and unconstrained optimization, game theory, queueing theory, and related topics. The text also elaborates on project management, including the importance of critical path analysis, PERT and CPM techniques. This textbook is ideal for any discipline with one or more courses in optimization and operations research; it may also provide a solid reference for researchers and practitioners in operations research.