Web Data Mining


Book Description

Liu has written a comprehensive text on Web mining, which consists of two parts. The first part covers the data mining and machine learning foundations, where all the essential concepts and algorithms of data mining and machine learning are presented. The second part covers the key topics of Web mining, where Web crawling, search, social network analysis, structured data extraction, information integration, opinion mining and sentiment analysis, Web usage mining, query log mining, computational advertising, and recommender systems are all treated both in breadth and in depth. His book thus brings all the related concepts and algorithms together to form an authoritative and coherent text. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in Web mining and data mining both as a learning text and as a reference book. Professors can readily use it for classes on data mining, Web mining, and text mining. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.




Web Mining


Book Description

Web Mining is moving the World Wide Web toward a more useful environment in which users can quickly and easily find the information they need. Web Mining uses document content, hyperlink structure, and usage statistics to assist users in meeting their needed information. This book provides a record of current research and practical applications in Web searching. It includes techniques that will improve the utilization of the Web by the design of Web sites, as well as the design and application of search agents. This book presents research and related applications in a manner that encourages additional work toward improving the reduction of information overflow, which is so common today in Web search results.




Advanced Practical Approaches to Web Mining Techniques and Application


Book Description

The rapid increase of web pages has introduced new challenges for many organizations as they attempt to extract information from a massive corpus of web pages. Finding relevant information, eliminating irregular content, and retrieving accurate results has become extremely difficult in today’s world where there is a surplus of information available. It is crucial to further understand and study web mining in order to discover the best ways to connect users with appropriate information in a timely manner. Advanced Practical Approaches to Web Mining Techniques and Application aims to illustrate all the concepts of web mining and fosters transformative, multidisciplinary, and novel approaches that introduce the practical method of analyzing various web data sources and extracting knowledge by taking into consideration the unique challenges present in the environment. Covering a range of topics such as data science and security threats, this reference work is ideal for industry professionals, researchers, academicians, practitioners, scholars, instructors, and students.




Advanced Techniques in Web Intelligence -1


Book Description

This book introduces a research applications in Web intelligence. It presents a number of innovative proposals which will contribute to the development of web science and technology for the long-term future, rendering this work a valuable piece of knowledge.




Advanced Techniques in Knowledge Discovery and Data Mining


Book Description

Clear and concise explanations to understand the learning paradigms. Chapters written by leading world experts.




Mining the World Wide Web


Book Description

Mining the World Wide Web: An Information Search Approach explores the concepts and techniques of Web mining, a promising and rapidly growing field of computer science research. Web mining is a multidisciplinary field, drawing on such areas as artificial intelligence, databases, data mining, data warehousing, data visualization, information retrieval, machine learning, markup languages, pattern recognition, statistics, and Web technology. Mining the World Wide Web presents the Web mining material from an information search perspective, focusing on issues relating to the efficiency, feasibility, scalability and usability of searching techniques for Web mining. Mining the World Wide Web is designed for researchers and developers of Web information systems and also serves as an excellent supplemental reference to advanced level courses in data mining, databases and information retrieval.




Mining the Web


Book Description

The definitive book on mining the Web from the preeminent authority.




Graph-theoretic Techniques for Web Content Mining


Book Description

This book describes exciting new opportunities for utilizing robust graph representations of data with common machine learning algorithms. Graphs can model additional information which is often not present in commonly used data representations, such as vectors. Through the use of graph distance ? a relatively new approach for determining graph similarity ? the authors show how well-known algorithms, such as k-means clustering and k-nearest neighbors classification, can be easily extended to work with graphs instead of vectors. This allows for the utilization of additional information found in graph representations, while at the same time employing well-known, proven algorithms.To demonstrate and investigate these novel techniques, the authors have selected the domain of web content mining, which involves the clustering and classification of web documents based on their textual substance. Several methods of representing web document content by graphs are introduced; an interesting feature of these representations is that they allow for a polynomial time distance computation, something which is typically an NP-complete problem when using graphs. Experimental results are reported for both clustering and classification in three web document collections using a variety of graph representations, distance measures, and algorithm parameters.In addition, this book describes several other related topics, many of which provide excellent starting points for researchers and students interested in exploring this new area of machine learning further. These topics include creating graph-based multiple classifier ensembles through random node selection and visualization of graph-based data using multidimensional scaling.




Advanced Techniques in Web Intelligence-2


Book Description

This research volume focuses on analyzing the web user browsing behaviour and preferences in traditional web-based environments, social networks and web 2.0 applications, by using advanced techniques in data acquisition, data processing, pattern extraction and cognitive science for modeling the human actions. The book is directed to graduate students, researchers/scientists and engineers interested in updating their knowledge with the recent trends in web user analysis, for developing the next generation of web-based systems and applications.




Data Mining: Concepts and Techniques


Book Description

Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data