Advances in Chitin/Chitosan Characterization and Applications


Book Description

Functional advanced biopolymers have received far less attention than renewable biomass (cellulose, rubber, etc.) used for energy production. Among the most advanced biopolymers known is chitosan. The term chitosan refers to a family of polysaccharides obtained by partial de-N-acetylation from chitin, one of the most abundant renewable resources in the biosphere. Chitosan has been firmly established as having unique material properties as well as biological activities. Either in its native form or as a chemical derivative, chitosan is amenable to being processed—typically under mild conditions—into soft materials such as hydrogels, colloidal nanoparticles, or nanofibers. Given its multiple biological properties, including biodegradability, antimicrobial effects, gene transfectability, and metal adsorption—to name but a few—chitosan is regarded as a widely versatile building block in various sectors (e.g., agriculture, food, cosmetics, pharmacy) and for various applications (medical devices, metal adsorption, catalysis, etc.). This Special Issue presents an updated account addressing some of the major applications, including also chemical and enzymatic modifications of oligos and polymers. A better understanding of the properties that underpin the use of chitin and chitosan in different fields is key for boosting their more extensive industrial utilization, as well as to aid regulatory agencies in establishing specifications, guidelines, and standards for the different types of products and applications.




Chitin and Chitosan Derivatives


Book Description

A natural long-chain polymer, chitin is the main component of the cell walls of fungi, the exoskeletons of arthropods (including crustaceans and insects), the radulas of mollusks, and the beaks and internal shells of cephalopods. However, marine crustacean shells are the primary sources of the chitin derivative chitosan. Chitin and chitosan are useful for various biological and biomedical applications, although they have been limited by poor solubility in the past. Current research focuses on increasing their solubility and bioactivity through molecular modifications. The resulting derivatives are receiving much attention for interesting properties, such as biocompatibility, biodegradability, and nontoxicity, that make them suitable for use in the biomedical field. Chitin and Chitosan Derivatives: Advances in Drug Discovery and Developments presents current research trends in the synthesis of chitin and chitosan derivatives, their biological activities, and their biomedical applications. Part I discusses basic information about the synthesis and characterization of a variety of derivatives, including the preparation of chitin nanofibers. Part II covers chitin and chitosan modifications as the basis for biological applications. It describes antioxidant, anti-inflammatory, anticancer, antiviral, anticoagulant, and antimicrobial activities. Part III addresses chemically modified and composite materials of chitin and chitosan derivatives for biomedical applications, such as tissue engineering, nanomedicine, drug delivery, and wound dressing. A must-have reference for novices and experts in biotechnology, natural products, materials science, nutraceuticals, and biomedical engineering, this book presents a wide range of biological and biomedical applications of chitin and chitosan derivatives for drug discovery and development.




Chitosan


Book Description

Unique book presenting the latest advancements and applications of chitosan-based hydrogels and composite materials in biotechnology, environmental studies, food, medicine, water treatments, drug delivery. This book delves deeply in to the preparation, characterization and multiple applications of chitin and chitosan. The 17 chapters written by leading experts is an excellent reference source and state-of-the-art review for researchers and scientists using chitosan or biopolymers in their respective areas. This book is divided into following sections: Production and derivatives of chitosan Chitosan in the textile and food industries Chitosan in biomedical applications Chitosan in agriculture and water treatment The book is practical and readers will be able to see descriptions of chitosan production methods as well as techniques that can be used to estimate and modify their physical and chemical properties. It provides a full description not only of the traditional and recent developments in the applications of chitosan in the fields of biotechnology, environmental studies, food, medicine, water treatments, drug delivery, but it includes all of the therapeutic usages as well.




Advances in Chitin/Chitosan Characterization and Applications


Book Description

Functional advanced biopolymers have received far less attention than renewable biomass (cellulose, rubber, et cetera) used for energy production. Among the most advanced biopolymers known is chitosan. The term chitosan refers to a family of polysaccharides obtained by partial de-N-acetylation from chitin, one of the most abundant renewable resources in the biosphere. Chitosan has been firmly established as having unique material properties as well as biological activities. Either in its native form or as a chemical derivative, chitosan is amenable to being processed-typically under mild conditions-into soft materials such as hydrogels, colloidal nanoparticles, or nanofibers. Given its multiple biological properties, including biodegradability, antimicrobial effects, gene transfectability, and metal adsorption-to name but a few-chitosan is regarded as a widely versatile building block in various sectors (e.g., agriculture, food, cosmetics, pharmacy) and for various applications (medical devices, metal adsorption, catalysis, et cetera). This Special Issue presents an updated account addressing some of the major applications, including also chemical and enzymatic modifications of oligos and polymers. A better understanding of the properties that underpin the use of chitin and chitosan in different fields is key for boosting their more extensive industrial utilization, as well as to aid regulatory agencies in establishing specifications, guidelines, and standards for the different types of products and applications.




Chitin and Chitosan


Book Description

Offers a comprehensive guide to the isolation, properties and applications of chitin and chitosan Chitin and Chitosan: Properties and Applications presents a comprehensive review of the isolation, properties and applications of chitin and chitosan. These promising biomaterials have the potential to be broadly applied and there is a growing market for these biopolymers in areas such as medical and pharmaceutical, packaging, agricultural, textile, cosmetics, nanoparticles and more. The authors – noted experts in the field – explore the isolation, characterization and the physical and chemical properties of chitin and chitosan. They also examine their properties such as hydrogels, immunomodulation and biotechnology, antimicrobial activity and chemical enzymatic modifications. The book offers an analysis of the myriad medical and pharmaceutical applications as well as a review of applications in other areas. In addition, the authors discuss regulations, markets and perspectives for the use of chitin and chitosan. This important book: Offers a thorough review of the isolation, properties and applications of chitin and chitosan. Contains information on the wide-ranging applications and growing market demand for chitin and chitosan Includes a discussion of current regulations and the outlook for the future Written for Researchers in academia and industry who are working in the fields of chitin and chitosan, Chitin and Chitosan: Properties and Applications offers a review of these promising biomaterials that have great potential due to their material properties and biological functionalities.




Biopolymers from Renewable Resources


Book Description

Biopolymers from Renewable Resources is a compilation of information on the diverse and useful polymers derived from agricultural, animal, and microbial sources. The volume provides insight into the diversity of polymers obtained directly from, or derived from, renewable resources. The beneficial aspects of utilizing polymers from renewable resources, when considering synthesis, pro cessing, disposal, biodegradability, and overall material life-cycle issues, suggests that this will continue to be an important and growing area of interest. The individual chapters provide information on synthesis, processing and properties for a variety of polyamides, polysaccharides, polyesters and polyphenols. The reader will have a single volume that provides a resource from which to gain initial insights into this diverse field and from which key references and contacts can be drawn. Aspects of biology, biotechnology, polymer synthesis, polymer processing and engineering, mechanical properties and biophysics are addressed to varying degrees for the specific biopolymers. The volume can be used as a reference book or as a teaching text. At the more practical level, the range of important materials derived from renewable resources is both extensive and impressive. Gels, additives, fibers, coatings and films are generated from a variety of the biopolymers reviewed in this volume. These polymers are used in commodity materials in our everyday lives, as well as in specialty products.




Chitosan in Drug Delivery


Book Description

Chitosan in Drug Delivery provides thorough insights into chitosan chemistry, collection, chemical modifications, characterization and applications in the pharmaceutical industry and healthcare fields. The book explores molecular weight, degree of deacetylation and molecular geometry, emphasizing recent advances in the field as written by academic, industry and regulatory scientists. It will be a useful resource for pharmaceutical scientists, including industrial pharmacists, analytical scientists, postgraduate students, health care professionals and regulatory scientists actively involved in pharmaceutical product and process development in natural polymers containing drug delivery. - Provides methodologies for the design, development and selection of chitosan in drug delivery for particular therapeutic applications - Includes illustrations demonstrating the mechanism of biological interaction of chitosan - Discusses the regulatory aspects and demonstrates the clinical efficacy of chitosan




Applications of Chitan and Chitosan


Book Description

The main driving force behind the development of new applications for chitin and its derivative chitosan lies with the fact that these polysaccharides represent a renewable source of natural biodegradable polymers. Since chitin is the second most abundant natural polymer, academic as well as industrial scientists are faced with a great challenge to find new and practical applications for this material. This book provides an examination of the state of the art, and discusses new applications as well as potential products. Applications of Chitin and Chitosan deals almost exclusively with applications. Previous books in the field have devoted less than 30% of their material to commercial or medical uses. In the past thirty years, substantial progress has been made on fundamental and applied research in chitosan technology. One of the driving forces behind this rapid development has been the decrease in the supply of natural resources. At the same time there has been an increased realization that there are abundant alternative bioresources. Two factors-economics and versatility-have also stimulated interest in chitosan's utilization in various fields. Chitin and chitosan derivatives have applications in fields that range from fertilizers to pharmaceuticals. Chitosan is no longer just a waste by-product from the seafood processing industry. This material is now being utilized by industry to solve problems and to improve existing products, as well as to create new ones. Applications of Chitin and Chitosan is illustrated with over 100 photos, charts, graphs and figures and more than 40 tables. Applications of Chitin and Chitosan will be of interest to industrial personnel involved in bioprocessing as well as bioengineering students, specialists in the biomedical and biopharmaceutical industry, biochemists, food engineers, environmentalists, and microbiologists and biologists who specialize in chitosan technology. Publication: Fall 1996.




Progress in Biomedical Polymers


Book Description




Bio-Based Packaging


Book Description

Bio-Based Packaging Bio-Based Packaging An authoritative and up-to-date review of sustainable packaging development and applications Bio-Based Packaging explores using renewable and biodegradable materials as sustainable alternatives to non-renewable, petroleum-based packaging. This comprehensive volume surveys the properties of biopolymers, the environmental and economic impact of bio-based packaging, and new and emerging technologies that are increasing the number of potential applications of green materials in the packaging industry. Contributions address the advantages and challenges of bio-based packaging, discuss new materials to be used for food packaging, and highlight cutting-edge research on polymers such as starch, protein, polylactic acid (PLA), pectin, nanocellulose, and their nanocomposites. In-depth yet accessible chapters provide balanced coverage of a broad range of practical topics, including life cycle assessment (LCA) of bio-based packaging products, consumer perceptions and preferences, supply chains, business strategies and markets in biodegradable food packaging, manufacturing of bio-based packaging materials, and regulations for food packaging materials. Detailed discussions provide valuable insight into the opportunities for biopolymers in end-use sectors, the barriers to biopolymer-based concepts in the packaging market, recent advances made in the field of biopolymeric composite materials, the future of bio-plastics in commercial food packaging, and more. This book: Provides deep coverage of the bio-based packaging development, characterization, regulations and environmental and socio-economic impact Contains real-world case studies of bio-based packaging applications Includes an overview of recent advances and emerging aspects of nanotechnology for development of sustainable composites for packaging Discusses renewable sources for packaging material and the reuse and recycling of bio-based packaging products Bio-Based Packaging is essential reading for academics, researchers, and industry professionals working in packaging materials, renewable resources, sustainability, polymerization technology, food technology, material engineering, and related fields. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs