Advances in Earth Science


Book Description




Remote Sensing Advances for Earth System Science


Book Description

This book presents cutting-edge remote sensing research, outlining the advanced use of European Space Agency (ESA) satellite data in the context of climate change. The ESA, through its Support to Science Element (STSE) Programme, funds a network of young post-doc scientists pursuing 2-year cutting-edge research projects in the field of remote sensing. This “Changing Earth Science Network” focuses on the exploitation of Earth Observation (EO) data to address major issues concerning the broader context of climate change in five scientific research domains: the oceans, atmosphere, cryosphere, land and solid earth.




Basic Research Opportunities in Earth Science


Book Description

Basic Research Opportunities in Earth Science identifies areas of high-priority research within the purview of the Earth Science Division of the National Science Foundation, assesses cross-disciplinary connections, and discusses the linkages between basic research and societal needs. Opportunities in Earth science have been opened up by major improvements in techniques for reading the geological record of terrestrial change, capabilities for observing active processes in the present-day Earth, and computational technologies for realistic simulations of dynamic geosystems. This book examines six specific areas in which the opportunities for basic research are especially compelling, including integrative studies of the near-surface environment (the "Critical Zone"); geobiology; Earth and planetary materials; investigations of the continents; studies of Earth's deep interior; and planetary science. It concludes with a discussion of mechanisms for exploiting these research opportunities, including EarthScope, natural laboratories, and partnerships.




New Research Opportunities in the Earth Sciences


Book Description

The 2001 National Research Council (NRC) report Basic Research Opportunities in Earth Science (BROES) described how basic research in the Earth sciences serves five national imperatives: (1) discovery, use, and conservation of natural resources; (2) characterization and mitigation of natural hazards; (3) geotechnical support of commercial and infrastructure development; (4) stewardship of the environment; and (5) terrestrial surveillance for global security and national defense. This perspective is even more pressing today, and will persist into the future, with ever-growing emphasis. Today's world-with headlines dominated by issues involving fossil fuel and water resources, earthquake and tsunami disasters claiming hundreds of thousands of lives and causing hundreds of billions of dollars in damages, profound environmental changes associated with the evolving climate system, and nuclear weapons proliferation and testing-has many urgent societal issues that need to be informed by sound understanding of the Earth sciences. A national strategy to sustain basic research and training of expertise across the full spectrum of the Earth sciences is motivated by these national imperatives. New Research Opportunities in the Earth Sciences identifies new and emerging research opportunities in the Earth sciences over the next decade, including surface and deep Earth processes and interdisciplinary research with fields such as ocean and atmospheric sciences, biology, engineering, computer science, and social and behavioral sciences. The report also identifies key instrumentation and facilities needed to support these new and emerging research opportunities. The report describes opportunities for increased cooperation in these new and emerging areas between EAR and other government agency programs, industry, and international programs, and suggests new ways that EAR can help train the next generation of Earth scientists, support young investigators, and increase the participation of underrepresented groups in the field.




A Vision for NSF Earth Sciences 2020-2030


Book Description

The Earth system functions and connects in unexpected ways - from the microscopic interactions of bacteria and rocks to the macro-scale processes that build and erode mountains and regulate Earth's climate. Efforts to study Earth's intertwined processes are made even more pertinent and urgent by the need to understand how the Earth can continue to sustain both civilization and the planet's biodiversity. A Vision for NSF Earth Sciences 2020-2030: Earth in Time provides recommendations to help the National Science Foundation plan and support the next decade of Earth science research, focusing on research priorities, infrastructure and facilities, and partnerships. This report presents a compelling and vibrant vision of the future of Earth science research.




Computers in Earth and Environmental Sciences


Book Description

Computers in Earth and Environmental Sciences: Artificial Intelligence and Advanced Technologies in Hazards and Risk Management addresses the need for a comprehensive book that focuses on multi-hazard assessments, natural and manmade hazards, and risk management using new methods and technologies that employ GIS, artificial intelligence, spatial modeling, machine learning tools and meta-heuristic techniques. The book is clearly organized into four parts that cover natural hazards, environmental hazards, advanced tools and technologies in risk management, and future challenges in computer applications to hazards and risk management. Researchers and professionals in Earth and Environmental Science who require the latest technologies and advances in hazards, remote sensing, geosciences, spatial modeling and machine learning will find this book to be an invaluable source of information on the latest tools and technologies available. - Covers advanced tools and technologies in risk management of hazards in both the Earth and Environmental Sciences - Details the benefits and applications of various technologies to assist researchers in choosing the most appropriate techniques for purpose - Expansively covers specific future challenges in the use of computers in Earth and Environmental Science - Includes case studies that detail the applications of the discussed technologies down to individual hazards




Deep Learning for the Earth Sciences


Book Description

DEEP LEARNING FOR THE EARTH SCIENCES Explore this insightful treatment of deep learning in the field of earth sciences, from four leading voices Deep learning is a fundamental technique in modern Artificial Intelligence and is being applied to disciplines across the scientific spectrum; earth science is no exception. Yet, the link between deep learning and Earth sciences has only recently entered academic curricula and thus has not yet proliferated. Deep Learning for the Earth Sciences delivers a unique perspective and treatment of the concepts, skills, and practices necessary to quickly become familiar with the application of deep learning techniques to the Earth sciences. The book prepares readers to be ready to use the technologies and principles described in their own research. The distinguished editors have also included resources that explain and provide new ideas and recommendations for new research especially useful to those involved in advanced research education or those seeking PhD thesis orientations. Readers will also benefit from the inclusion of: An introduction to deep learning for classification purposes, including advances in image segmentation and encoding priors, anomaly detection and target detection, and domain adaptation An exploration of learning representations and unsupervised deep learning, including deep learning image fusion, image retrieval, and matching and co-registration Practical discussions of regression, fitting, parameter retrieval, forecasting and interpolation An examination of physics-aware deep learning models, including emulation of complex codes and model parametrizations Perfect for PhD students and researchers in the fields of geosciences, image processing, remote sensing, electrical engineering and computer science, and machine learning, Deep Learning for the Earth Sciences will also earn a place in the libraries of machine learning and pattern recognition researchers, engineers, and scientists.




Antarctic Climate Evolution


Book Description

Antarctic Climate Evolution is the first book dedicated to furthering knowledge on the evolution of the world's largest ice sheet over its ~34 million year history. This volume provides the latest information on subjects ranging from terrestrial and marine geology to sedimentology and glacier geophysics. - An overview of Antarctic climate change, analyzing historical, present-day and future developments - Contributions from leading experts and scholars from around the world - Informs and updates climate change scientists and experts in related areas of study




Women and Geology


Book Description

Women have been a part of the story of geology from the beginning, but they have struggled to gain professional opportunities, equal pay, and respect as scientists for decades. Some have been dismissed, some have been forced to work without pay, and some have been denied credit. This volume highlights the progress of women in geology, including past struggles and how remarkable individuals were able to overcome them, current efforts to draw positive attention and perceptions to women in the science, and recruitment and mentorship efforts to attract and retain the next generation of women in geology. Chapters include the first American women researchers in Antarctica, a survey of Hollywood disaster movies and the casting of women as geologists, social media campaigns such as #365ScienceSelfies, and the stories of the Association for Women Geoscientists and the Earth Science Women's Network and their work to support and mentor women in geology.




Thriving on Our Changing Planet


Book Description

We live on a dynamic Earth shaped by both natural processes and the impacts of humans on their environment. It is in our collective interest to observe and understand our planet, and to predict future behavior to the extent possible, in order to effectively manage resources, successfully respond to threats from natural and human-induced environmental change, and capitalize on the opportunities â€" social, economic, security, and more â€" that such knowledge can bring. By continuously monitoring and exploring Earth, developing a deep understanding of its evolving behavior, and characterizing the processes that shape and reshape the environment in which we live, we not only advance knowledge and basic discovery about our planet, but we further develop the foundation upon which benefits to society are built. Thriving on Our Changing Planet presents prioritized science, applications, and observations, along with related strategic and programmatic guidance, to support the U.S. civil space Earth observation program over the coming decade.