Advances in Financial Machine Learning


Book Description

Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.




Advances in Machine Learning Applications in Software Engineering


Book Description

"This book provides analysis, characterization and refinement of software engineering data in terms of machine learning methods. It depicts applications of several machine learning approaches in software systems development and deployment, and the use of machine learning methods to establish predictive models for software quality while offering readers suggestions by proposing future work in this emerging research field"--Provided by publisher.




New Advances in Machine Learning


Book Description

The purpose of this book is to provide an up-to-date and systematical introduction to the principles and algorithms of machine learning. The definition of learning is broad enough to include most tasks that we commonly call “learning” tasks, as we use the word in daily life. It is also broad enough to encompass computers that improve from experience in quite straightforward ways. The book will be of interest to industrial engineers and scientists as well as academics who wish to pursue machine learning. The book is intended for both graduate and postgraduate students in fields such as computer science, cybernetics, system sciences, engineering, statistics, and social sciences, and as a reference for software professionals and practitioners. The wide scope of the book provides a good introduction to many approaches of machine learning, and it is also the source of useful bibliographical information.




Advances in Machine Learning and Data Mining for Astronomy


Book Description

Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines




Machine Learning Paradigms


Book Description

This book presents recent machine learning paradigms and advances in learning analytics, an emerging research discipline concerned with the collection, advanced processing, and extraction of useful information from both educators’ and learners’ data with the goal of improving education and learning systems. In this context, internationally respected researchers present various aspects of learning analytics and selected application areas, including: • Using learning analytics to measure student engagement, to quantify the learning experience and to facilitate self-regulation; • Using learning analytics to predict student performance; • Using learning analytics to create learning materials and educational courses; and • Using learning analytics as a tool to support learners and educators in synchronous and asynchronous eLearning. The book offers a valuable asset for professors, researchers, scientists, engineers and students of all disciplines. Extensive bibliographies at the end of each chapter guide readers to probe further into their application areas of interest.




Machine Learning


Book Description

In chapter one, Lei Jia, PhD and Hua Gao, PhD analyze machine learning applications in small molecule and macromolecule drug discovery and development while comparing the similarities and differences between the two. They also examine their advantages and limitations with the intent to encourage further creative machine learning applications in drug discovery and development. During chapter two, Oscar Claveria, Enric Monte, and Salvador Torra present a study on the extrapolative performance of several machine learning models in a multiple-input multiple-output setting that permits cross-correlation between the inputs. Bojan Ploj, Germano Resconi, and Ali Yaghoubi parallel the solution of a system by logic gates and by a neural network, in which considerations are computed by the designated one step method during chapter three. In chapter four, Loris Nannia, Nicolò Zaffonatoa, Christian Salvatoreb, Isabella Castiglionib, and the Alzheimers Disease Neuroimaging Initiative propose a method that could aid in the early diagnosis of Alzheimers disease. Afterwards, F. Dornaika and I. Kamal Aldine present and experimentally assess two non-linear data self-representativeness coding schemes based on Hilbert space and column generation. Lastly, Christos Chrysoulas, Grigorios Kalliatakis, and Georgios Stamatiadis give an overview of Apache Hadoop, an open-source software framework used to distribute storage and process big data using the MapReduce programming model.




Probabilistic Machine Learning


Book Description

A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.




Machine Learning for Asset Managers


Book Description

Successful investment strategies are specific implementations of general theories. An investment strategy that lacks a theoretical justification is likely to be false. Hence, an asset manager should concentrate her efforts on developing a theory rather than on backtesting potential trading rules. The purpose of this Element is to introduce machine learning (ML) tools that can help asset managers discover economic and financial theories. ML is not a black box, and it does not necessarily overfit. ML tools complement rather than replace the classical statistical methods. Some of ML's strengths include (1) a focus on out-of-sample predictability over variance adjudication; (2) the use of computational methods to avoid relying on (potentially unrealistic) assumptions; (3) the ability to "learn" complex specifications, including nonlinear, hierarchical, and noncontinuous interaction effects in a high-dimensional space; and (4) the ability to disentangle the variable search from the specification search, robust to multicollinearity and other substitution effects.




Advances in Machine Learning and Computational Intelligence


Book Description

This book gathers selected high-quality papers presented at the International Conference on Machine Learning and Computational Intelligence (ICMLCI-2019), jointly organized by Kunming University of Science and Technology and the Interscience Research Network, Bhubaneswar, India, from April 6 to 7, 2019. Addressing virtually all aspects of intelligent systems, soft computing and machine learning, the topics covered include: prediction; data mining; information retrieval; game playing; robotics; learning methods; pattern visualization; automated knowledge acquisition; fuzzy, stochastic and probabilistic computing; neural computing; big data; social networks and applications of soft computing in various areas.




Empowering Artificial Intelligence Through Machine Learning


Book Description

This new volume, Empowering Artificial intelligence Through Machine Learning: New Advances and Applications, discusses various new applications of machine learning, a subset of the field of artificial intelligence. Artificial intelligence is considered to be the next-big-game changer in research and technology, The volume looks at how computing has enabled machines to learn, making machine and tools become smarter in many sectors, including science and engineering, healthcare, finance, education, gaming, security, and even agriculture, plus many more areas. Topics include techniques and methods in artificial intelligence for making machines intelligent, machine learning in healthcare, using machine learning for credit card fraud detection, using artificial intelligence in education using gaming and automatization with courses and outcomes mapping, and much more. The book will be valuable to professionals, faculty, and students in electronics and communication engineering, telecommunication engineering, network engineering, computer science and information technology.