Advances in Network Information Theory


Book Description

Information theory has recently attracted renewed attention because of key developments spawning challenging research problems." "The book is suitable for graduate students and research mathematicians interested in communications and network information theory."--Jacket.




Advances in Network Information Theory


Book Description

Information theory has recently attracted renewed attention because of key developments spawning challenging research problems." "The book is suitable for graduate students and research mathematicians interested in communications and network information theory."--Jacket.




Network Information Theory


Book Description

This comprehensive treatment of network information theory and its applications provides the first unified coverage of both classical and recent results. With an approach that balances the introduction of new models and new coding techniques, readers are guided through Shannon's point-to-point information theory, single-hop networks, multihop networks, and extensions to distributed computing, secrecy, wireless communication, and networking. Elementary mathematical tools and techniques are used throughout, requiring only basic knowledge of probability, whilst unified proofs of coding theorems are based on a few simple lemmas, making the text accessible to newcomers. Key topics covered include successive cancellation and superposition coding, MIMO wireless communication, network coding, and cooperative relaying. Also covered are feedback and interactive communication, capacity approximations and scaling laws, and asynchronous and random access channels. This book is ideal for use in the classroom, for self-study, and as a reference for researchers and engineers in industry and academia.




Information Theory and Network Coding


Book Description

This book is an evolution from my book A First Course in Information Theory published in 2002 when network coding was still at its infancy. The last few years have witnessed the rapid development of network coding into a research ?eld of its own in information science. With its root in infor- tion theory, network coding has not only brought about a paradigm shift in network communications at large, but also had signi?cant in?uence on such speci?c research ?elds as coding theory, networking, switching, wireless c- munications,distributeddatastorage,cryptography,andoptimizationtheory. While new applications of network coding keep emerging, the fundamental - sults that lay the foundation of the subject are more or less mature. One of the main goals of this book therefore is to present these results in a unifying and coherent manner. While the previous book focused only on information theory for discrete random variables, the current book contains two new chapters on information theory for continuous random variables, namely the chapter on di?erential entropy and the chapter on continuous-valued channels. With these topics included, the book becomes more comprehensive and is more suitable to be used as a textbook for a course in an electrical engineering department.




Elements of Information Theory


Book Description

The latest edition of this classic is updated with new problem sets and material The Second Edition of this fundamental textbook maintains the book's tradition of clear, thought-provoking instruction. Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory. All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points. The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated references Now current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.




Information Theory and the Brain


Book Description

This book deals with information theory, a new and expanding area of neuroscience which provides a framework for understanding neuronal processing.




Algebraic Coding Theory and Information Theory


Book Description

In these papers associated with the workshop of December 2003, contributors describe their work in fountain codes for lossless data compression, an application of coding theory to universal lossless source coding performance bounds, expander graphs and codes, multilevel expander codes, low parity check lattices, sparse factor graph representations of Reed-Solomon and related codes. Interpolation multiplicity assignment algorithms for algebraic soft- decision decoding of Reed-Solomon codes, the capacity of two- dimensional weight-constrained memories, networks of two-way channels, and a new approach to the design of digital communication systems. Annotation :2005 Book News, Inc., Portland, OR (booknews.com).




Advances in Visual Data Compression and Communication


Book Description

This book provides a theoretical and technical basis for advanced research on visual data compression and communication. It presents the results of the author's research on visual data compression and transmission. Studying scalable video coding (SVC), it considers the fundamental problem to be solved in SVC-motion compensation. It explores directional transforms, extends the current coding framework by visual synthesis and reconstruction, and explains how to apply compressive sensing to solve the compression problems in transmission. It also develops the pseudo-analog transmission for image and video.




Introduction to Information Theory and Data Compression, Second Edition


Book Description

An effective blend of carefully explained theory and practical applications, this text imparts the fundamentals of both information theory and data compression. Although the two topics are related, this unique text allows either topic to be presented independently, and it was specifically designed so that the data compression section requires no prior knowledge of information theory. The treatment of information theory, while theoretical and abstract, is quite elementary, making this text less daunting than many others. After presenting the fundamental definitions and results of the theory, the authors then apply the theory to memoryless, discrete channels with zeroth-order, one-state sources. The chapters on data compression acquaint students with a myriad of lossless compression methods and then introduce two lossy compression methods. Students emerge from this study competent in a wide range of techniques. The authors' presentation is highly practical but includes some important proofs, either in the text or in the exercises, so instructors can, if they choose, place more emphasis on the mathematics. Introduction to Information Theory and Data Compression, Second Edition is ideally suited for an upper-level or graduate course for students in mathematics, engineering, and computer science. Features: Expanded discussion of the historical and theoretical basis of information theory that builds a firm, intuitive grasp of the subject Reorganization of theoretical results along with new exercises, ranging from the routine to the more difficult, that reinforce students' ability to apply the definitions and results in specific situations. Simplified treatment of the algorithm(s) of Gallager and Knuth Discussion of the information rate of a code and the trade-off between error correction and information rate Treatment of probabilistic finite state source automata, including basic results, examples, references, and exercises Octave and MATLAB image compression codes included in an appendix for use with the exercises and projects involving transform methods Supplementary materials, including software, available for download from the authors' Web site at www.dms.auburn.edu/compression




Information Theory for Data Communications and Processing


Book Description

Modern, current, and future communications/processing aspects motivate basic information-theoretic research for a wide variety of systems for which we do not have the ultimate theoretical solutions (for example, a variety of problems in network information theory as the broadcast/interference and relay channels, which mostly remain unsolved in terms of determining capacity regions and the like). Technologies such as 5/6G cellular communications, Internet of Things (IoT), and mobile edge networks, among others, not only require reliable rates of information measured by the relevant capacity and capacity regions, but are also subject to issues such as latency vs. reliability, availability of system state information, priority of information, secrecy demands, energy consumption per mobile equipment, sharing of communications resources (time/frequency/space), etc. This book, composed of a collection of papers that have appeared in the Special Issue of the Entropy journal dedicated to “Information Theory for Data Communications and Processing”, reflects, in its eleven chapters, novel contributions based on the firm basic grounds of information theory. The book chapters address timely theoretical and practical aspects that constitute both interesting and relevant theoretical contributions, as well as direct implications for modern current and future communications systems.