Advanced Petroleum Reservoir Simulation


Book Description

This second edition of the original volume adds significant new innovations for revolutionizing the processes and methods used in petroleum reservoir simulations. With the advent of shale drilling, hydraulic fracturing, and underbalanced drilling has come a virtual renaissance of scientific methodologies in the oil and gas industry. New ways of thinking are being pioneered, and Dr. Islam and his team have, for years now, been at the forefront of these important changes. This book clarifies the underlying mathematics and physics behind reservoir simulation and makes it easy to have a range of simulation results along with their respective probability. This makes the risk analysis based on knowledge rather than guess work. The book offers by far the strongest tool for engineers and managers to back up reservoir simulation predictions with real science. The book adds transparency and ease to the process of reservoir simulation in way never witnessed before. Finally, No other book provides readers complete access to the 3D, 3-phase reservoir simulation software that is available with this text. A must-have for any reservoir engineer or petroleum engineer working upstream, whether in exploration, drilling, or production, this text is also a valuable textbook for advanced students and graduate students in petroleum or chemical engineering departments.




Reservoir Simulations


Book Description

Reservoir Simulation: Machine Learning and Modeling helps the engineer step into the current and most popular advances in reservoir simulation, learning from current experiments and speeding up potential collaboration opportunities in research and technology. This reference explains common terminology, concepts, and equations through multiple figures and rigorous derivations, better preparing the engineer for the next step forward in a modeling project and avoid repeating existing progress. Well-designed exercises, case studies and numerical examples give the engineer a faster start on advancing their own cases. Both computational methods and engineering cases are explained, bridging the opportunities between computational science and petroleum engineering. This book delivers a critical reference for today's petroleum and reservoir engineer to optimize more complex developments. - Understand commonly used and recent progress on definitions, models, and solution methods used in reservoir simulation - World leading modeling and algorithms to study flow and transport behaviors in reservoirs, as well as the application of machine learning - Gain practical knowledge with hand-on trainings on modeling and simulation through well designed case studies and numerical examples.




Advanced Modeling with the MATLAB Reservoir Simulation Toolbox


Book Description

Many leading experts contribute to this follow-up to An Introduction to Reservoir Simulation using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox (MRST). It introduces more advanced functionality that has been recently added to the open-source MRST software. It is however a self-contained introduction to a variety of modern numerical methods for simulating multiphase flow in porous media, with applications to geothermal energy, chemical enhanced oil recovery (EOR), flow in fractured and unconventional reservoirs, and in the unsaturated zone. The reader will learn how to implement new models and algorithms in a robust, efficient manner. A large number of numerical examples are included, all fully equipped with code and data so that the reader can reproduce the results and use them as a starting point for their own work. Like the original textbook, this book will prove invaluable for researchers, professionals and advanced students using reservoir simulation methods. This title is available as Open Access on Cambridge Core.







An Introduction to Reservoir Simulation Using MATLAB/GNU Octave


Book Description

Presents numerical methods for reservoir simulation, with efficient implementation and examples using widely-used online open-source code, for researchers, professionals and advanced students. This title is also available as Open Access on Cambridge Core.




Principles of Applied Reservoir Simulation


Book Description

Simulate reservoirs effectively to extract the maximum oil, gas and profit, with this book and free simlation software on companion web site.




Embedded Discrete Fracture Modeling and Application in Reservoir Simulation


Book Description

The development of naturally fractured reservoirs, especially shale gas and tight oil reservoirs, exploded in recent years due to advanced drilling and fracturing techniques. However, complex fracture geometries such as irregular fracture networks and non-planar fractures are often generated, especially in the presence of natural fractures. Accurate modelling of production from reservoirs with such geometries is challenging. Therefore, Embedded Discrete Fracture Modeling and Application in Reservoir Simulation demonstrates how production from reservoirs with complex fracture geometries can be modelled efficiently and effectively. This volume presents a conventional numerical model to handle simple and complex fractures using local grid refinement (LGR) and unstructured gridding. Moreover, it introduces an Embedded Discrete Fracture Model (EDFM) to efficiently deal with complex fractures by dividing the fractures into segments using matrix cell boundaries and creating non-neighboring connections (NNCs). A basic EDFM approach using Cartesian grids and advanced EDFM approach using Corner point and unstructured grids will be covered. Embedded Discrete Fracture Modeling and Application in Reservoir Simulation is an essential reference for anyone interested in performing reservoir simulation of conventional and unconventional fractured reservoirs. - Highlights the current state-of-the-art in reservoir simulation of unconventional reservoirs - Offers understanding of the impacts of key reservoir properties and complex fractures on well performance - Provides case studies to show how to use the EDFM method for different needs




Petroleum Reservoir Simulation


Book Description

Petroleum Reservoir Simulation, Second Edition, introduces this novel engineering approach for petroleum reservoir modeling and operations simulations. Updated with new exercises, a new glossary and a new chapter on how to create the data to run a simulation, this comprehensive reference presents step-by-step numerical procedures in an easy to understand format. Packed with practical examples and guidelines, this updated edition continues to deliver an essential tool for all petroleum and reservoir engineers.




Adaptive Approach to Petroleum Reservoir Simulation


Book Description

This book presents unique features of the adaptive modeling approach based on new machine learning algorithms for petroleum exploration, development, and production. The adaptive approach helps simulation engineers and geoscientists to create adequate geological and hydrodynamic models. This approach is proven to be a real alternative to traditional techniques, such as deterministic modeling. Currently, machine-learning algorithms grow in popularity because they provide consistency, predictiveness, and convenience. The primary purpose of this book is to describe the theoretical state of the adaptive approach and show some examples of its implementation in simulation and forecasting different reservoir processes.




Reservoir Modelling


Book Description

The essential resource to an integrated approach to reservoir modelling by highlighting both the input of data and the modelling results Reservoir Modelling offers a comprehensive guide to the procedures and workflow for building a 3-D model. Designed to be practical, the principles outlined can be applied to any modelling project regardless of the software used. The author — a noted practitioner in the field — captures the heterogeneity due to structure, stratigraphy and sedimentology that has an impact on flow in the reservoir. This essential guide follows a general workflow from data QC and project management, structural modelling, facies and property modelling to upscaling and the requirements for dynamic modelling. The author discusses structural elements of a model and reviews both seismic interpretation and depth conversion, which are known to contribute most to volumetric uncertainty and shows how large-scale stratigraphic relationships are integrated into the reservoir framework. The text puts the focus on geostatistical modelling of facies and heterogeneities that constrain the distribution of reservoir properties including porosity, permeability and water saturation. In addition, the author discusses the role of uncertainty analysis in the static model and its impact on volumetric estimation. The text also addresses some typical approaches to modelling specific reservoirs through a mix of case studies and illustrative examples and: Offers a practical guide to the use of data to build a successful reservoir model Draws on the latest advances in 3-D modelling software Reviews facies modelling, the different methods and the need for understanding the geological interpretation of cores and logs Presents information on upscaling both the structure and the properties of a fine-scale geological model for dynamic simulation Stresses the importance of an interdisciplinary team-based approach Written for geophysicists, reservoir geologists and petroleum engineers, Reservoir Modelling offers the essential information needed to understand a reservoir for modelling and contains the multidisciplinary nature of a reservoir modelling project.