Advances in Synthesis of Metallic, Oxidic and Composite Powders


Book Description

Advances in synthesis of metallic, oxidic and composite powders were presented via the following methods: ultrasound-assisted leaching¸ ultrasonic spray pyrolysis, hydrogenation, dehydrogenation, ball milling, molten salt electrolysis, galvanostatic electrolysis, hydrogen reduction, thermochemical decomposition, inductively coupled thermal plasma, precipitation and high pressure carbonation in an autoclave. This Special Issue contains 17 papers from Europe, Asia, Australia, South Africa and the Balkans. The synthesis was focused on metals: Co, Cu; Re; oxides: ZnO, MgO, SiO2; V2O5; sulfides: MoS2, core shell material: Cu-Al2O3, Pt/TiO2; compounds: Ca0.75Ce0.25ZrTi2O7, Mo5Si3, Ti6Al4V. The environmentally friendly strategies were presented at the carbonation of olivine, treatment of acid mine drainage water and production of vanadium oxide.




Advances in Synthesis of Metallic, Oxidic and Composite Powders


Book Description

Advances in synthesis of metallic, oxidic and composite powders were presented via the following methods: ultrasound-assisted leaching ̧ ultrasonic spray pyrolysis, hydrogenation, dehydrogenation, ball milling, molten salt electrolysis, galvanostatic electrolysis, hydrogen reduction, thermochemical decomposition, inductively coupled thermal plasma, precipitation and high pressure carbonation in an autoclave. This Special Issue contains 17 papers from Europe, Asia, Australia, South Africa and the Balkans. The synthesis was focused on metals: Co, Cu; Re; oxides: ZnO, MgO, SiO2; V2O5; sulfides: MoS2, core shell material: Cu-Al2O3, Pt/TiO2; compounds: Ca0.75Ce0.25ZrTi2O7, Mo5Si3, Ti6Al4V. The environmentally friendly strategies were presented at the carbonation of olivine, treatment of acid mine drainage water and production of vanadium oxide.




Metal Oxide Powder Technologies


Book Description

Metal Oxide Powder Technologies: Fundamentals, Processing Methods and Applications reviews the fundamentals, processing methods and applications of this key materials system. Topics addressed comprehensively cover chemical and physical properties, synthesis, preparation, both accepted and novel processing methods, modeling and simulation. The book provides fundamental information on the key properties that impact performance, such as particle size and crystal structure, along with methods to measure, analyze and evaluate. Finally, important applications are covered, including biomedical, energy, electronics and materials applications. Provides a comprehensive overview of key topics both on the theoretical side and the experimental Discusses important properties that impact metal oxide performance, processing methods (both novel and accepted), and important applications Reviews the most relevant applications, such as biomedical, energy, electronics and materials applications




Advances in powder metallurgy


Book Description

Since the early 1990s considerable effort has been devoted to the development of metal-based composite powders (MeCP). Reinforcements in MeCP can vary from intermetallic to ceramic or polymer, depending on composition and can also be microstructured or nanostructured, depending on the size of the constituent materials. Composite powders can be used at the macro- and microscale to produce dense composite objects, composite coatings, to provide a combination of properties in one component or to provide specific properties to withstand extreme conditions in service. In addition to this, technology for the synthesis of nanodevices has also evolved. Metal composite powders are produced by a variety of methods based on solid-, liquid- and gas-phase synthesis and mechanosynthesis. Functionality and design are the current drivers for the development of metal composite powders.




Ceramic nanocomposites


Book Description

The chapter discusses several variants of mechanosyntheses for composite powder formation of metal alloy matrices with ceramic particles. The necessity of following progress in mechanochemical processes using different analytical methods is shown. Based on the results of experimental studies on Cu–Al/Al2O3 and Ni-Al/Al2O3 nanocomposite powder formation through mechanochemical synthesis, the method of transforming combustive processes to progressive ones by applying hydroxosalts instead of metal oxides as precursors of composites is described.




2D Metal Carbides and Nitrides (MXenes)


Book Description

This book describes the rapidly expanding field of two-dimensional (2D) transition metal carbides and nitrides (MXenes). It covers fundamental knowledge on synthesis, structure, and properties of these new materials, and a description of their processing, scale-up and emerging applications. The ways in which the quickly expanding family of MXenes can outperform other novel nanomaterials in a variety of applications, spanning from energy storage and conversion to electronics; from water science to transportation; and in defense and medical applications, are discussed in detail.




Metal Oxide Nanoparticles, 2 Volume Set


Book Description

Metal Oxide Nanoparticles A complete nanoparticle resource for chemists and industry professionals Metal oxide nanoparticles are integral to a wide range of natural and technological processes—from mineral transformation to electronics. Additionally, the fields of engineering, electronics, energy technology, and electronics all utilize metal oxide nanoparticle powders. Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces presents readers with the most relevant synthesis and formulation approaches for using metal oxide nanoparticles as functional materials. It covers common processing routes and the assessment of physical and chemical particle properties through comprehensive and complementary characterization methods. This book will serve as an introduction to nanoparticle formulation, their interface chemistry and functional properties at the nanoscale. It will also act as an in-depth resource, sharing detailed information on advanced approaches to the physical, chemical, surface, and interface characterization of metal oxide nanoparticle powders and dispersions. Addresses the application of metal oxide nanoparticles and its economic impact Examines particle synthesis, including the principles of selected bottom-up strategies Explores nanoparticle formulation—a selection of processing and application routes Discusses the significance of particle surfaces and interfaces on structure formation, stability and functional materials properties Covers metal oxide nanoparticle characterization at different length scales With this valuable resource, academic researchers, industrial chemists, and PhD students can all gain insight into the synthesis, properties, and applications of metal oxide nanoparticles.




Advances in powder metallurgy


Book Description

This chapter introduces the novel method of mechanochemical synthesis as an effective method for synthesizing metal powders in the nanocrystalline state. After introducing the basic principles of the process, process parameters that affect the constitution and microstructure of the processed powders are discussed. The mechanisms of alloying and grain refinement are also described. Methods for achieving the smallest possible grain size are highlighted. Current problems associated with the consolidation of powders to bulk shape are described. The ubiquitous problem of powder contamination during milling and solutions to eliminate or minimize this are also emphasized.




Advances in Powder and Ceramic Materials Science 2023


Book Description

This collection emphasizes the advances of powder and ceramic/glass materials in the fundamental research, technology development, and industrial applications. Ceramic materials science covers the science and technology of creating objects from inorganic, non-metallic materials, and includes design, synthesis, and fabrication of ceramics, glasses, advanced concretes, and ceramic-metal composites. In recent years, the hybrids of ceramic and metallic materials have received plenty of interdisciplinary inspirations and achievements in material processes and functional applications including ionic conductors, catalysis, energy conversion and storage, superconductors, semiconductor, filtrations, etc. Topics cover, but are not limited to:· Silicates, oxides, and non-oxide ceramics and glasses · Synthesis, characterization, modeling, and simulation of ceramic materials · Design and control of ceramic microstructure and properties · Ceramic powders and processing · Catalyst and catalyst support materials · Fundamental understanding of ceramic materials and processes · Novel methods, techniques, and instruments used to characterize ceramics and glasses · High entropy ceramics (and/or entropy stabilized, complex-concentrated, compositionally-complex, multi-principal cation ceramics) · Bioceramics, electronic, magnetic ceramics, and applications · Surface treatment and ceramic thin films, membranes, and coatings · Porous ceramic materials · Hybrid systems of ceramic, metal, and/or polymer composites · Ceramics used for extreme environments · Metallurgical byproducts for ceramic manufacturing




Advances in Powder Metallurgy


Book Description

Powder metallurgy (PM) is a popular metal forming technology used to produce dense and precision components. Different powder and component forming routes can be used to create an end product with specific properties for a particular application or industry. Advances in powder metallurgy explores a range of materials and techniques used for powder metallurgy and the use of this technology across a variety of application areas. Part one discusses the forming and shaping of metal powders and includes chapters on atomisation techniques, electrolysis and plasma synthesis of metallic nanopowders. Part two goes on to highlight specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys. Part three reviews the manufacture and densification of PM components and explores joining techniques, process optimisation in powder component manufacturing and non-destructive evaluation of PM parts. Finally, part four focusses on the applications of PM in the automotive industry and the use of PM in the production of cutting tools and biomaterials. Advances in powder metallurgy is a standard reference for structural engineers and component manufacturers in the metal forming industry, professionals working in industries that use PM components and academics with a research interest in the field. Discusses the forming and shaping of metal powders and includes chapters on atomisation techniques Highlights specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys Reviews the manufacture and densification of PM components and explores joining techniques