Advances in the Theory of Control, Signals and Systems with Physical Modeling


Book Description

In the 60's, control, signals and systems had a common linear algebraic background and, according to their evolution, their respective backgrounds have now dramatically differed. Recovering such a common background, especially in the nonlinear context, is currently a fully open question. The role played by physical models, finite or infinite dimensional, in this hypothetical convergence is extensively discussed in this book. The discussion does not only take place on a theoretical basis but also in the light of two wide classes of applications, among the most active in the current industrially oriented researches: - Electrical and Mechatronical systems; - Chemical Processes and systems appearing in Life Sciences. In this perspective, this book is a contribution to the enhancement of the dialogue between theoretical laboratories and more practically oriented ones and industries. This book is a collection of articles that have been presented by leading international experts at a series of three workshops of a Bernoulli program entitled “Advances in the Theory of Control, Signals and Systems, with Physical Modeling” hosted by the Bernoulli Centre of EPFL during the first semester of 2009. It provides researchers, engineers and graduate students with an unprecedented collection of topics and internationally acknowledged top-quality works and surveys.




Advances in the Theory of Control, Signals and Systems with Physical Modeling


Book Description

In the 60's, control, signals and systems had a common linear algebraic background and, according to their evolution, their respective backgrounds have now dramatically differed. Recovering such a common background, especially in the nonlinear context, is currently a fully open question. The role played by physical models, finite or infinite dimensional, in this hypothetical convergence is extensively discussed in this book. The discussion does not only take place on a theoretical basis but also in the light of two wide classes of applications, among the most active in the current industrially oriented researches: - Electrical and Mechatronical systems; - Chemical Processes and systems appearing in Life Sciences. In this perspective, this book is a contribution to the enhancement of the dialogue between theoretical laboratories and more practically oriented ones and industries. This book is a collection of articles that have been presented by leading international experts at a series of three workshops of a Bernoulli program entitled “Advances in the Theory of Control, Signals and Systems, with Physical Modeling” hosted by the Bernoulli Centre of EPFL during the first semester of 2009. It provides researchers, engineers and graduate students with an unprecedented collection of topics and internationally acknowledged top-quality works and surveys.




Advances in the Theory of Control, Signals and Systems with Physical Modeling


Book Description

In the 60's, control, signals and systems had a common linear algebraic background and, according to their evolution, their respective backgrounds have now dramatically differed. Recovering such a common background, especially in the nonlinear context, is currently a fully open question. The role played by physical models, finite or infinite dimensional, in this hypothetical convergence is extensively discussed in this book. The discussion does not only take place on a theoretical basis but also in the light of two wide classes of applications, among the most active in the current industrially oriented researches: - Electrical and Mechatronical systems; - Chemical Processes and systems appearing in Life Sciences. In this perspective, this book is a contribution to the enhancement of the dialogue between theoretical laboratories and more practically oriented ones and industries. This book is a collection of articles that have been presented by leading international experts at a series of three workshops of a Bernoulli program entitled “Advances in the Theory of Control, Signals and Systems, with Physical Modeling” hosted by the Bernoulli Centre of EPFL during the first semester of 2009. It provides researchers, engineers and graduate students with an unprecedented collection of topics and internationally acknowledged top-quality works and surveys.




Selected Problems of Fractional Systems Theory


Book Description

This monograph covers some selected problems of positive fractional 1D and 2D linear systems. It is an extended and modified English version of its preceding Polish edition published by Technical University of Bialystok in 2009. This book is based on the lectures delivered by the author to the Ph.D. students of the Faculty of Electrical Engineering of Bialystok University of Technology and of Warsaw University of Technology and on invited lectures in several foreign universities in the last three years.




Control Technologies for Emerging Micro and Nanoscale Systems


Book Description

This book comprises a selection of the presentations made at the “Workshop on Dynamics and Control of Micro and Nanoscale Systems” held at IBM Research – Zurich, Switzerland, on the 10th and 11th of December 2009. The aim of the workshop was to bring together some of the leading researchers in the field of dynamics and control of micro- and nanoscale systems. It proved an excellent forum for discussing new ideas and approaches.




Reconfigurable Control of Nonlinear Dynamical Systems


Book Description

This research monograph summarizes solutions to reconfigurable fault-tolerant control problems for nonlinear dynamical systems that are based on the fault-hiding principle. It emphasizes but is not limited to complete actuator and sensor failures. In the first part, the monograph starts with a broad introduction of the control reconfiguration problems and objectives as well as summaries and explanations of solutions for linear dynamical systems. The solution is always a reconfiguration block, which consists of linear virtual actuators in the case of actuator faults and linear virtual sensors in the case of sensor faults. The main advantage of the fault-hiding concept is the reusability of the nominal controller, which remains in the loop as an active system while the virtual actuator and sensor adapt the control input and the measured output to the fault scenario. The second and third parts extend virtual actuators and virtual sensors towards the classes of Hammerstein-Wiener systems and piecewise affine systems. The main analyses concern stability recovery, setpoint tracking recovery, and performance recovery as reconfiguration objectives. The fourth part concludes the monograph with descriptions of practical implementations and case studies. The book is primarily intended for active researchers and practicing engineers in the field of fault-tolerant control. Due to many running examples it is also suitable for interested graduate students.




Analysis and Synthesis of Networked Control Systems


Book Description

Analysis and Synthesis of Networked Control Systems focuses on essential aspects of this field, including quantization over networks, data fusion over networks, predictive control over networks and fault detection over networks. The networked control systems have led to a complete new range of real-world applications. In recent years, the techniques of Internet of Things are developed rapidly, the research of networked control systems plays a key role in Internet of Things. The book is self-contained, providing sufficient mathematical foundations for understanding the contents of each chapter. It will be of significant interest to scientists and engineers engaged in the field of Networked Control Systems. Dr. Yuanqing Xia, a professor at Beijing Institute of Technology, has been working on control theory and its applications for over ten years.




Distributed Decision Making and Control


Book Description

Distributed Decision Making and Control is a mathematical treatment of relevant problems in distributed control, decision and multiagent systems, The research reported was prompted by the recent rapid development in large-scale networked and embedded systems and communications. One of the main reasons for the growing complexity in such systems is the dynamics introduced by computation and communication delays. Reliability, predictability, and efficient utilization of processing power and network resources are central issues and the new theory and design methods presented here are needed to analyze and optimize the complex interactions that arise between controllers, plants and networks. The text also helps to meet requirements arising from industrial practice for a more systematic approach to the design of distributed control structures and corresponding information interfaces Theory for coordination of many different control units is closely related to economics and game theory network uses being dictated by congestion-based pricing of a given pathway. The text extends existing methods which represent pricing mechanisms as Lagrange multipliers to distributed optimization in a dynamic setting. In Distributed Decision Making and Control, the main theme is distributed decision making and control with contributions to a general theory and methodology for control of complex engineering systems in engineering, economics and logistics. This includes scalable methods and tools for modeling, analysis and control synthesis, as well as reliable implementations using networked embedded systems. Academic researchers and graduate students in control science, system theory, and mathematical economics and logistics will find mcu to interest them in this collection, first presented orally by the contributors during a sequence of workshops organized in Spring 2010 by the Lund Center for Control of Complex Engineering Systems, a Linnaeus Center at Lund University, Sweden.>




Optimization Based Clearance of Flight Control Laws


Book Description

This book summarizes the main achievements of the EC funded 6th Framework Program project COFCLUO – Clearance of Flight Control Laws Using Optimization. This project successfully contributed to the achievement of a top-level objective to meet society’s needs for a more efficient, safer and environmentally friendly air transport by providing new techniques and tools for the clearance of flight control laws. This is an important part of the certification and qualification process of an aircraft – a costly and time-consuming process for the aeronautical industry. The overall objective of the COFCLUO project was to develop and apply optimization techniques to the clearance of flight control laws in order to improve efficiency and reliability. In the book, the new techniques are explained and benchmarked against traditional techniques currently used by the industry. The new techniques build on mathematical criteria derived from the certification and qualification requirements together with suitable models of the aircraft. The development of these criteria and models are also presented in the book. Because of wider applicability, the optimization-based clearance of flight control laws will open up the possibility to design innovative aircraft that today are out of the scope using classical clearance tools. Optimization-based clearance will not only increase safety but it will also simplify the whole certification and qualification process, thus significantly reduce cost. The achieved speedup will also support rapid modeling and prototyping and reduce “time to market”.




Identification for Automotive Systems


Book Description

Increasing complexity and performance and reliability expectations make modeling of automotive system both more difficult and more urgent. Automotive control has slowly evolved from an add-on to classical engine and vehicle design to a key technology to enforce consumption, pollution and safety limits. Modeling, however, is still mainly based on classical methods, even though much progress has been done in the identification community to speed it up and improve it. This book, the product of a workshop of representatives of different communities, offers an insight on how to close the gap and exploit this progress for the next generations of vehicles.