Aerodynamics Principles for Air Transport Pilots


Book Description

Equipping readers with the ability to analyze the aerodynamic forces on an aircraft, the book provides comprehensive knowledge of the characteristics of subsonic and supersonic airflow. This book begins with the fundamental physics principles of aerodynamics, then introduces the Continuity Equation, Energy Equations, and Bernoulli’s Equation, which form the basic aerodynamic principles for subsonic airflow. It provides a thorough understanding of the forces acting on an aircraft across a range of speeds and their effects on the aircraft's performance, including a discussion on the difference in aerofoil and aircraft shapes. Aircraft stability issues are analyzed, along with the development of a boundary layer over an aerofoil, the changes of air speed and air pressure, and boundary layer separation. Readers will gain a clear understanding of the nature of airflow over aircraft during subsonic, transonic, and supersonic flight. The book emphasizes the connection between operating actions in flight and aerodynamic requirements. The content will be of interest to senior undergraduates studying to obtain their Airline Transport Pilot License (ATPL)/Airline Transport Pilot (ATP) certificate, general aviation and air transport pilots, and aircraft maintenance engineers.




Aerodynamics Principles for Air Transport Pilots


Book Description

Equipping readers with the ability to analyze the aerodynamic forces on an aircraft, the book provides comprehensive knowledge of the characteristics of subsonic and supersonic airflow. This book begins with the fundamental physics principles of aerodynamics, then introduces the Continuity Equation, Energy Equations, and Bernoulli’s Equation, which form the basic aerodynamic principles for subsonic airflow. It provides a thorough understanding of the forces acting on an aircraft across a range of speeds and their effects on the aircraft's performance, including a discussion on the difference in aerofoil and aircraft shapes. Aircraft stability issues are analyzed, along with the development of a boundary layer over an aerofoil, the changes of air speed and air pressure, and boundary layer separation. Readers will gain a clear understanding of the nature of airflow over aircraft during subsonic, transonic, and supersonic flight. The book emphasizes the connection between operating actions in flight and aerodynamic requirements. The content will be of interest to senior undergraduates studying to obtain their Airline Transport Pilot License (ATPL)/Airline Transport Pilot (ATP) certificate, general aviation and air transport pilots, and aircraft maintenance engineers.




The Turbine Pilot's Flight Manual


Book Description

Covering all the essentials of turbine aircraft, this guide will prepare readers for a turbine aircraft interview, commuter ground school, or a new jet job.




Human Being Pilot


Book Description

Human Being Pilot 3rd Ed Printed




Introduction to Aircraft Flight Mechanics


Book Description

Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.




Securing the Future of U.S. Air Transportation


Book Description

As recently as the summer of 2001, many travelers were dreading air transportation because of extensive delays associated with undercapacity of the system. That all changed on 9/11, and demand for air transportation has not yet returned to peak levels. Most U.S. airlines continue to struggle for survival, and some have filed for bankruptcy. The situation makes it difficult to argue that strong action is urgently needed to avert a crisis of undercapacity in the air transportation system. This report assesses the visions and goals for U.S. civil aviation and technology goals for the year 2050.