Theory and Phenomena of Metamaterials


Book Description

Theory and Phenomena of Metamaterials offers an in-depth look at the theoretical background and basic properties of electromagnetic artificial materials, often called metamaterials. A volume in the Metamaterials Handbook, this book provides a comprehensive guide to working with metamaterials using topics presented in a concise review format along with numerous references. With contributions from leading researchers, this text covers all areas where artificial materials have been developed. Each chapter in the text features a concluding summary as well as various cross references to address a wide range of disciplines in a single volume.




Advanced Electromagnetism: Foundations: Theory And Applications


Book Description

Advanced Electromagnetism: Foundations, Theory and Applications treats what is conventionally called electromagnetism or Maxwell's theory within the context of gauge theory or Yang-Mills theory. A major theme of this book is that fields are not stand-alone entities but are defined by their boundary conditions. The book has practical relevance to efficient antenna design, the understanding of forces and stresses in high energy pulses, ring laser gyros, high speed computer logic elements, efficient transfer of power, parametric conversion, and many other devices and systems. Conventional electromagnetism is shown to be an underdeveloped, rather than a completely developed, field of endeavor, with major challenges in development still to be met.




Analytical Methods in Anisotropic Elasticity


Book Description

* Comprehensive textbook/reference applies mathematical methods and modern symbolic computational tools to anisotropic elasticity * Presents unified approach to a vast diversity of structural models * State-of-the-art solutions are provided for a wide range of composite material configurations, including: 3-D anisotropic bodies, 2-D anisotropic plates, laminated and thin-walled structures




Differential Forms in Electromagnetics


Book Description

An introduction to multivectors, dyadics, and differential forms for electrical engineers While physicists have long applied differential forms to various areas of theoretical analysis, dyadic algebra is also the most natural language for expressing electromagnetic phenomena mathematically. George Deschamps pioneered the application of differential forms to electrical engineering but never completed his work. Now, Ismo V. Lindell, an internationally recognized authority on differential forms, provides a clear and practical introduction to replacing classical Gibbsian vector calculus with the mathematical formalism of differential forms. In Differential Forms in Electromagnetics, Lindell simplifies the notation and adds memory aids in order to ease the reader's leap from Gibbsian analysis to differential forms, and provides the algebraic tools corresponding to the dyadics of Gibbsian analysis that have long been missing from the formalism. He introduces the reader to basic EM theory and wave equations for the electromagnetic two-forms, discusses the derivation of useful identities, and explains novel ways of treating problems in general linear (bi-anisotropic) media. Clearly written and devoid of unnecessary mathematical jargon, Differential Forms in Electromagnetics helps engineers master an area of intense interest for anyone involved in research on metamaterials.










Functional Analysis, Sobolev Spaces and Partial Differential Equations


Book Description

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.







Index to IEEE Publications


Book Description




Numerical Methods for Elliptic and Parabolic Partial Differential Equations


Book Description

This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.