Agents and Robots for Reliable Engineered Autonomy


Book Description

This book contains the contributions of the Special Issue entitled "Agents and Robots for Reliable Engineered Autonomy". The Special Issue was based on the successful first edition of the "Workshop on Agents and Robots for reliable Engineered Autonomy" (AREA 2020), co-located with the 24th European Conference on Artificial Intelligence (ECAI 2020). The aim was to bring together researchers from autonomous agents, as well as software engineering and robotics communities, as combining knowledge from these three research areas may lead to innovative approaches that solve complex problems related to the verification and validation of autonomous robotic systems.




Designing Autonomous Agents


Book Description

Designing Autonomous Agents provides a summary and overview of the radically different architectures that have been developed over the past few years for organizing robots. These architectures have led to major breakthroughs that promise to revolutionize the study of autonomous agents and perhaps artificial intelligence in general. The new architectures emphasize more direct coupling of sensing to action, distributedness and decentralization, dynamic interaction with the environment, and intrinsic mechanisms to cope with limited resources and incomplete knowledge. The research discussed here encompasses such important ideas as emergent functionality, task-level decomposition, and reasoning methods such as analogical representations and visual operations that make the task of perception more realistic. Contents A Biological Perspective on Autonomous Agent Design, Randall D. Beer, Hillel J. Chiel, Leon S. Sterling * Elephants Don't Play Chess, Rodney A. Brooks * What Are Plans For? Philip E. Agre and David Chapman * Action and Planning in Embedded Agents, Leslie Pack Kaelbling and Stanley J. Rosenschein * Situated Agents Can Have Goals, Pattie Maes * Exploiting Analogical Representations, Luc Steels * Internalized Plans: A Representation for Action Resources, David W. Payton * Integrating Behavioral, Perceptual, and World Knowledge in Reactive Navigation, Ronald C. Arkin * Symbol Grounding via a Hybrid Architecture in an Autonomous Assembly System, Chris Malcolm and Tim Smithers * Animal Behavior as a Paradigm for Developing Robot Autonomy, Tracy L. Anderson and Max Donath




Agents and Robots for Reliable Engineered Autonomy


Book Description

This book constitutes the proceedings of the 4th Workshops on Agents and Robots for Reliable Engineered Autonomy, AREA 2024, which took place in Santiago de Compostela, Spain, on October 19, 2024, in conjunction with ECAI 2024. The 9 full papers and 1 short paper included in this book were carefully reviewed and selected from 14 submissions. They deal with agent-oriented software engineering, robotic applications, formal verification, and artificial intelligence.




Behavior-based Robotics


Book Description

Foreword by Michael Arbib This introduction to the principles, design, and practice of intelligent behavior-based autonomous robotic systems is the first true survey of this robotics field. The author presents the tools and techniques central to the development of this class of systems in a clear and thorough manner. Following a discussion of the relevant biological and psychological models of behavior, he covers the use of knowledge and learning in autonomous robots, behavior-based and hybrid robot architectures, modular perception, robot colonies, and future trends in robot intelligence. The text throughout refers to actual implemented robots and includes many pictures and descriptions of hardware, making it clear that these are not abstract simulations, but real machines capable of perception, cognition, and action.




Autonomous Robots


Book Description

An introduction to the science and practice of autonomous robots that reviews over 300 current systems and examines the underlying technology. Autonomous robots are intelligent machines capable of performing tasks in the world by themselves, without explicit human control. Examples range from autonomous helicopters to Roomba, the robot vacuum cleaner. In this book, George Bekey offers an introduction to the science and practice of autonomous robots that can be used both in the classroom and as a reference for industry professionals. He surveys the hardware implementations of more than 300 current systems, reviews some of their application areas, and examines the underlying technology, including control, architectures, learning, manipulation, grasping, navigation, and mapping. Living systems can be considered the prototypes of autonomous systems, and Bekey explores the biological inspiration that forms the basis of many recent developments in robotics. He also discusses robot control issues and the design of control architectures. After an overview of the field that introduces some of its fundamental concepts, the book presents background material on hardware, control (from both biological and engineering perspectives), software architecture, and robot intelligence. It then examines a broad range of implementations and applications, including locomotion (wheeled, legged, flying, swimming, and crawling robots), manipulation (both arms and hands), localization, navigation, and mapping. The many case studies and specific applications include robots built for research, industry, and the military, among them underwater robotic vehicles, walking machines with four, six, and eight legs, and the famous humanoid robots Cog, Kismet, ASIMO, and QRIO. The book concludes with reflections on the future of robotics—the potential benefits as well as the possible dangers that may arise from large numbers of increasingly intelligent and autonomous robots.




Foundations of Trusted Autonomy


Book Description

This book establishes the foundations needed to realize the ultimate goals for artificial intelligence, such as autonomy and trustworthiness. Aimed at scientists, researchers, technologists, practitioners, and students, it brings together contributions offering the basics, the challenges and the state-of-the-art on trusted autonomous systems in a single volume. The book is structured in three parts, with chapters written by eminent researchers and outstanding practitioners and users in the field. The first part covers foundational artificial intelligence technologies, while the second part covers philosophical, practical and technological perspectives on trust. Lastly, the third part presents advanced topics necessary to create future trusted autonomous systems. The book augments theory with real-world applications including cyber security, defence and space.




Introduction to AI Robotics, second edition


Book Description

A comprehensive survey of artificial intelligence algorithms and programming organization for robot systems, combining theoretical rigor and practical applications. This textbook offers a comprehensive survey of artificial intelligence (AI) algorithms and programming organization for robot systems. Readers who master the topics covered will be able to design and evaluate an artificially intelligent robot for applications involving sensing, acting, planning, and learning. A background in AI is not required; the book introduces key AI topics from all AI subdisciplines throughout the book and explains how they contribute to autonomous capabilities. This second edition is a major expansion and reorganization of the first edition, reflecting the dramatic advances made in AI over the past fifteen years. An introductory overview provides a framework for thinking about AI for robotics, distinguishing between the fundamentally different design paradigms of automation and autonomy. The book then discusses the reactive functionality of sensing and acting in AI robotics; introduces the deliberative functions most often associated with intelligence and the capability of autonomous initiative; surveys multi-robot systems and (in a new chapter) human-robot interaction; and offers a “metaview” of how to design and evaluate autonomous systems and the ethical considerations in doing so. New material covers locomotion, simultaneous localization and mapping, human-robot interaction, machine learning, and ethics. Each chapter includes exercises, and many chapters provide case studies. Endnotes point to additional reading, highlight advanced topics, and offer robot trivia.







Software Engineering for Robotics


Book Description

The topics covered in this book range from modeling and programming languages and environments, via approaches for design and verification, to issues of ethics and regulation. In terms of techniques, there are results on model-based engineering, product lines, mission specification, component-based development, simulation, testing, and proof. Applications range from manufacturing to service robots, to autonomous vehicles, and even robots than evolve in the real world. A final chapter summarizes issues on ethics and regulation based on discussions from a panel of experts. The origin of this book is a two-day event, entitled RoboSoft, that took place in November 2019, in London. Organized with the generous support of the Royal Academy of Engineering and the University of York, UK, RoboSoft brought together more than 100 scientists, engineers and practitioners from all over the world, representing 70 international institutions. The intended readership includes researchers and practitioners with all levels of experience interested in working in the area of robotics, and software engineering more generally. The chapters are all self-contained, include explanations of the core concepts, and finish with a discussion of directions for further work. Chapters 'Towards Autonomous Robot Evolution', 'Composition, Separation of Roles and Model-Driven Approaches as Enabler of a Robotics Software Ecosystem' and 'Verifiable Autonomy and Responsible Robotics' are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.