Aircraft Configurations Developing High Lift-drag Ratios at High Supersonic Speeds


Book Description

Summary: The problem of designing an aircraft which will develop high lift-drag ratios in flight at high supersonic speeds is attacked using the elementary principle that the components of the aircraft should be individually and collectively arranged to impart the maximum downward and the minimum forward momentum to the surrounding air. This principle in conjunction with other practical considerations of hypersonic flight leads to the study of configurations for which the body is situated entirely below the wing; that is, flat-top wing-body combinations. Theory indicates that sensibly complete aircraft of this type can be designed to develop lift-drag ratios well in excess of 6.




NASA Technical Note


Book Description







Adventures in Research


Book Description




Monthly Catalog of United States Government Publications


Book Description

February issue includes Appendix entitled Directory of United States Government periodicals and subscription publications; September issue includes List of depository libraries; June and December issues include semiannual index.




Facing the Heat Barrier


Book Description

Hypersonics is the study of flight at speeds where aerodynamic heating dominates the physics of the problem. Typically this is Mach 5 and higher. Hypersonics is an engineering science with close links to supersonics and engine design. Within this field, many of the most important results have been experimental. The principal facilities have been wind tunnels and related devices, which have produced flows with speeds up to orbital velocity. Why is it important? Hypersonics has had two major applications. The first has been to provide thermal protection during atmospheric entry. Success in this enterprise has supported ballistic-missile nose cones, has returned strategic reconnaissance photos from orbit and astronauts from the Moon, and has even dropped an instrument package into the atmosphere of Jupiter. The last of these approached Jupiter at four times the speed of a lunar mission returning to Earth. Work with re-entry has advanced rapidly because of its obvious importance. The second application has involved high-speed propulsion and has sought to develop the scramjet as an advanced airbreathing ramjet. Scramjets are built to run cool and thereby to achieve near-orbital speeds. They were important during the Strategic Defense Initiative, when a set of these engines was to power the experimental X-30 as a major new launch vehicle. This effort fell short, but the X-43A, carrying a scramjet, has recently flown at Mach 9.65 by using a rocket. Atmospheric entry today is fully mature as an engineering discipline. Still, the Jupiter experience shows that work with its applications continues to reach for new achievements. Studies of scramjets, by contrast, still seek full success, in which such engines can accelerate a vehicle without the use of rockets. Hence, there is much to do in this area as well. For instance, work with computers may soon show just how good scramjets can become. NASA SP-2007-4232




Index of NACA Technical Publications


Book Description