Alcohol Fuel Pathways


Book Description




Transportation Biofuels


Book Description

Current world fossil oil production is struggling to meet demand and may even show a decline after 2010. It is therefore necessary to develop new energy-efficient production pathways for transportation biofuels. This book offers an insight into three promising and innovative pathways for the biological production of ethanol, biogas and biodiesel. These unconventional methods should provide higher product yields, less stringent feedstock specifications, lower chemical additive demand, reduced waste production and much better energy balances when compared to more traditional methods. One pathway concerns the enzymatic production of a new kind of biodiesel where no glycerol waste is produced and an up to twenty percent higher product yield is obtained. The other two pathways are based on the biological conversion of syngas into ethanol or methane using various kinds of lignocellulosic biomass as the starting point. For each of the three pathways a comparison will be made with competing production methods. The contents reflect extended desktop research and show practical experimental results. Government scientists, academics and biofuel producers with an interest in novel transportation fuels will all find this book to be essential reading.




Biofuels for Aviation


Book Description

Biofuels for Aviation: Feedstocks, Technology and Implementation presents the issues surrounding the research and use of biofuels for aviation, such as policy, markets, certification and performance requirements, life cycle assessment, and the economic and technical barriers to their full implementation. Readers involved in bioenergy and aviation sectors—research, planning, or policy making activities—will benefit from this thorough overview. The aviation industry's commitment to reducing GHG emissions along with increasing oil prices have sparked the need for renewable and affordable energy sources tailored to this sector's very specific needs. As jet engines cannot be readily electrified, turning to biofuels is the most viable option. However, aviation is a type of transportation for which traditional biofuels, such as bioethanol and biodiesel, do not fulfill key fuel requirements. Therefore, different solutions to this situation are being researched and tested around the globe, which makes navigating this scenario particularly challenging. This book guides readers through this intricate subject, bringing them up to speed with its current status and future prospects both from the academic and the industry point of view. Science and technology chapters delve into the technical aspects of the currently tested and the most promising technology in development, as well as their respective feedstocks and the use of additives as a way of adapting them to meet certain specifications. Conversion processes such as hydrotreatment, synthetic biology, pyrolysis, hydrothermal liquefaction and Fisher-Tropsch are explored and their results are assessed for current and future viability. - Presents the current status of biofuels for the aviation sector, including technologies that are currently in use and the most promising future technologies, their production processes and viability - Explains the requirements for certification and performance of aviation fuels and how that can be achieved by biofuels - Explores the economic and policy issues, as well as life cycle assessment, a comparative techno-economic analysis of promising technologies and a roadmap to the future - Explores conversion processes such as hydrotreatment, synthetic biology, pyrolysis, hydrothermal liquefaction and Fisher-Tropsch




Advanced Biofuel Technologies


Book Description

Advanced Biofuel Technologies: Present Status, Challenges and Future Prospects deals with important issues such as feed stock availability, technology options, greenhouse gas reduction as seen by life cycle assessment studies, regulations and policies. This book provides readers complete information on the current state of developments in both thermochemical and biochemical processes for advanced biofuels production for the purpose of transportation, domestic and industrial applications. Chapters explore technological innovations in advanced biofuels produced from agricultural residues, algae, lipids and waste industrial gases to produce road transport fuels, biojet fuel and biogas. - Covers technologies and processes of different types of biofuel production - Outlines a selection of different types of renewable feedstocks for biofuel production - Summarizes adequate and balanced coverage of thermochemical and biochemical methods of biomass conversion into biofuel - Includes regulations, policies and lifecycle and techno-economic assessments




Production of Clean Hydrogen by Electrochemical Reforming of Oxygenated Organic Compounds


Book Description

Production of Clean Hydrogen by Electrochemical Reforming of Oxygenated Organic Compounds provides a comprehensive overview of the thermodynamics and experimental results that allow the decomposition process of organic compounds leading to hydrogen to be carried out at working cell voltages much lower than those encountered in water electrolysis. The authors review different methods of synthesis and characterization of the catalysts needed to activate the electro-oxidation reaction and describe different electrolysis experiments that produce hydrogen in a Proton Exchange Membrane Electrolysis Cell (PEMEC). Other sections investigate the effect of the nature of the reactive molecules, the nature and structure of the catalysts, and more. By exploring the link between organic oxidation/conversion to hydrogen production, this book fills a gap in the existing literature and provides researchers in the field with an authoritative and comprehensive reference they can use when developing new sustainable processes and systems for hydrogen production. - Explores, in detail, the decomposition process of organic compounds leading to hydrogen - Presents foundational information, practical insights and pathways for future work in the development of proton exchange membrane electrolysis cell systems - Includes results, experimental data and interpretations using different organic compounds, such as methanol, formic acid, ethanol, glycerol and biomass







Catalysts for Alcohol-Fuelled Direct Oxidation Fuel Cells


Book Description

Energy and environment issues are of paramount importance to achieve the sustainable development of our society. Alcohol-fuelled direct oxidation fuel cells (DOFCs), as a clean and highly-efficient energy harvesting engine, have attracted intensive research activity over recent decades. Electrocatalysts are the material at the very heart of the cell that determines the performance of DOFCs. The rapid advances in electrocatalysts, particularly nano-sized ones, have left current information only available in scattered journals. To be truly useful to both present and future researchers, a new book is needed to present an insightful review of the reaction nature of this research and to systematically summarize recent advances in nanocatalysts, and convey a more global perspective. Catalysts for Alcohol-fuelled Direct Oxidation Fuel Cells will present a state-of-the-art review on recent advances in nanocatalysts and electrocatalysis in DOFCs, including both proton and hydroxide ion exchange membrane fuel cells. The main topics covered include a molecular-level understanding of electrocatalysis, the design principles of electrocatalysts, recent advances in nanocatalysts and future perspectives for DOFCs. The book presents a cutting-edge collection on nanocatalysts for alcohol-fuelled direct oxidation fuel cells and brings together the most authoritative researchers in the field from both industry and academia, filling the gap between both sides. Finally, the book will provide an insightful review on electrocatalysis at the molecular- level, which will be useful for postgraduate students and junior researchers in this field. It will be an essential resource for postgraduates, researchers and policy-makers globally in academia, industry, and government institutions.




Direct Alcohol Fuel Cells for Portable Applications


Book Description

Direct Alcohol Fuel Cells for Portable Applications: Fundamentals, Engineering and Advances presents the fundamental concepts, technological advances and challenges in developing, modeling and deploying fuel cells and fuel cell systems for portable devices, including micro and mini fuel cells. The authors review the fundamental science of direct alcohol fuel cells, covering, in detail, thermodynamics, electrode kinetics and electrocatalysis of charge-transfer reactions, mass and heat transfer phenomena, and basic modeling aspects. In addition, the book examines other fuels in DAFCs, such as formic acid, ethylene glycol and glycerol, along with technological aspects and applications, including case studies and cost analysis. Researchers, engineering professionals, fuel cell developers, policymakers and senior graduate students will find this a valuable resource. The book's comprehensive coverage of fundamentals is especially useful for graduate students, advanced undergraduate students and those new to the field. - Provides a comprehensive understanding of the fundamentals of DAFCs and their basic components, design and performance - Presents current and complete information on the state-of-the-art of DAFC technology and its most relevant challenges for commercial deployment - Includes practical application examples, problems and case studies - Covers the use of other fuels, such as formic acid, ethylene glycol and glycerol




Environmental Challenges and Greenhouse Gas Control for Fossil Fuel Utilization in the 21st Century


Book Description

As we are moving ahead into the 21st century, our hunger for cost effective and environmentally friendly energy continues to grow. The Energy Information Administration of US has forecasted that only in the first two decades of the 21st century, our energy demand will increase by 60% compared to the levels at the end of the 20th century. Fossil fuels have been traditionally the major primary energy sources worldwide, and their role is expected to continue growing for the forecasted period, due to their inherent cost competitiveness compared to non-fossil fuel energy sources. However, the current fossil energy scenario is undergoing significant transformations, especially to accommodate increasingly stringent environmental challenges of contaminants like sulfur dioxide, nitrogen oxides or mercury, while still providing affordable energy. Furthermore, traditional fossil fuel utilization is inherently plagued with greenhouse gas emissions from combustion, especially carbon dioxide from stationary sources as well as from mobile sources. Should worldwide government policies dictate a reduction of greenhouse gas emissions, such as proposed by the Kyoto Protocol and the implementation of carbon taxes, fossil fuels would lose their significant competitive appeal in favor of nuclear energy and renewable energy sources. However, the current non-fossil fuel energy share of the worldwide energy market is merely below 15%, and therefore, it is more likely that fossil fuel energy producers would adapt to the new requirements by developing and implementing emission control technologies, and emission trades among other strategies.