Algebraic Art


Book Description

Algebraic Art explores the invention of a peculiarly Victorian account of the nature and value of aesthetic form, and it traces that account to a surprising source: mathematics. The nineteenth century was a moment of extraordinary mathematical innovation, witnessing the development of non-Euclidean geometry, the revaluation of symbolic algebra, and the importation of mathematical language into philosophy. All these innovations sprang from a reconception of mathematics as a formal rather than a referential practice--as a means for describing relationships rather than quantities. For Victorian mathematicians, the value of a claim lay not in its capacity to describe the world but its internal coherence. This concern with formal structure produced a striking convergence between mathematics and aesthetics: geometers wrote fables, logicians reconceived symbolism, and physicists described reality as consisting of beautiful patterns. Artists, meanwhile, drawing upon the cultural prestige of mathematics, conceived their work as a 'science' of form, whether as lines in a painting, twinned characters in a novel, or wavelike stress patterns in a poem. Avant-garde photographs and paintings, fantastical novels like Flatland and Lewis Carroll's children's books, and experimental poetry by Swinburne, Rossetti, and Patmore created worlds governed by a rigorous internal logic even as they were pointedly unconcerned with reference or realist protocols. Algebraic Art shows that works we tend to regard as outliers to mainstream Victorian culture were expressions of a mathematical formalism that was central to Victorian knowledge production and that continues to shape our understanding of the significance of form.




Algebraic Art


Book Description

Algebraic Art explores the invention of a peculiarly Victorian account of the nature and value of aesthetic form, and it traces that account to a surprising source: mathematics. Drawing on literature, art, and photography, it explores how the Victorian mathematical conception of form still resonates today.




Opt Art


Book Description

Bosch provides a lively and accessible introduction to the geometric, algebraic, and algorithmic foundations of optimization. He presents classical applications, such as the legendary Traveling Salesman Problem, and shows how to adapt them to make optimization art--opt art. art.




The Analytic Art


Book Description

This historic work consists of several treatises that developed the first consistent, coherent, and systematic conception of algebraic equations. Originally published in 1591, it pioneered the notion of using symbols of one kind (vowels) for unknowns and of another kind (consonants) for known quantities, thus streamlining the solution of equations. Francois Viète (1540-1603), a lawyer at the court of King Henry II in Tours and Paris, wrote several treatises that are known collectively as The Analytic Art. His novel approach to the study of algebra developed the earliest articulated theory of equations, allowing not only flexibility and generality in solving linear and quadratic equations, but also something completely new—a clear analysis of the relationship between the forms of the solutions and the values of the coefficients of the original equation. Viète regarded his contribution as developing a "systematic way of thinking" leading to general solutions, rather than just a "bag of tricks" to solve specific problems. These essays demonstrate his method of applying his own ideas to existing usage in ways that led to clear formulation and solution of equations.







Introduction to Algebra


Book Description




Prealgebra Solutions Manual


Book Description







Elementary Algebra


Book Description




From Cardano's Great Art to Lagrange's Reflections


Book Description

This book is an exploration of a claim made by Lagrange in the autumn of 1771 as he embarked upon his lengthy ``Reflexions sur la resolution algebrique des equations'': that there had been few advances in the algebraic solution of equations since the time of Cardano in the mid sixteenth century. That opinion has been shared by many later historians. The present study attempts to redress that view and to examine the intertwined developments in the theory of equations from Cardano to Lagrange. A similar historical exploration led Lagrange himself to insights that were to transform the entire nature and scope of algebra. Progress was not confined to any one country: at different times mathematicians in Italy, France, the Netherlands, England, Scotland, Russia, and Germany contributed to the discussion and to a gradual deepening of understanding. In particular, the national Academies of Berlin, St. Petersburg, and Paris in the eighteenth century were crucial in supporting informed mathematical communities and encouraging the wider dissemination of key ideas. This study therefore truly highlights the existence of a European mathematical heritage. The book is written in three parts. Part I offers an overview of the period from Cardano to Newton (1545 to 1707) and is arranged chronologically. Part II covers the period from Newton to Lagrange (1707 to 1771) and treats the material according to key themes. Part III is a brief account of the aftermath of the discoveries made in the 1770s. The book attempts throughout to capture the reality of mathematical discovery by inviting the reader to follow in the footsteps of the authors themselves, with as few changes as possible to the original notation and style of presentation.