Algorithms


Book Description

Problem solving is an essential part of every scientific discipline. It has two components: (1) problem identification and formulation, and (2) solution of the formulated problem. One can solve a problem on its own using ad hoc techniques or follow those techniques that have produced efficient solutions to similar problems. This requires the understanding of various algorithm design techniques, how and when to use them to formulate solutions and the context appropriate for each of them. This book advocates the study of algorithm design techniques by presenting most of the useful algorithm design techniques and illustrating them through numerous examples.




The Algorithm Design Manual


Book Description

This newly expanded and updated second edition of the best-selling classic continues to take the "mystery" out of designing algorithms, and analyzing their efficacy and efficiency. Expanding on the first edition, the book now serves as the primary textbook of choice for algorithm design courses while maintaining its status as the premier practical reference guide to algorithms for programmers, researchers, and students. The reader-friendly Algorithm Design Manual provides straightforward access to combinatorial algorithms technology, stressing design over analysis. The first part, Techniques, provides accessible instruction on methods for designing and analyzing computer algorithms. The second part, Resources, is intended for browsing and reference, and comprises the catalog of algorithmic resources, implementations and an extensive bibliography. NEW to the second edition: • Doubles the tutorial material and exercises over the first edition • Provides full online support for lecturers, and a completely updated and improved website component with lecture slides, audio and video • Contains a unique catalog identifying the 75 algorithmic problems that arise most often in practice, leading the reader down the right path to solve them • Includes several NEW "war stories" relating experiences from real-world applications • Provides up-to-date links leading to the very best algorithm implementations available in C, C++, and Java




Algorithms: Design Techniques And Analysis (Second Edition)


Book Description

Problem solving is an essential part of every scientific discipline. It has two components: (1) problem identification and formulation, and (2) the solution to the formulated problem. One can solve a problem on its own using ad hoc techniques or by following techniques that have produced efficient solutions to similar problems. This required the understanding of various algorithm design techniques, how and when to use them to formulate solutions, and the context appropriate for each of them.This book presents a design thinking approach to problem solving in computing — by first using algorithmic analysis to study the specifications of the problem, before mapping the problem on to data structures, then on to the situatable algorithms. Each technique or strategy is covered in its own chapter supported by numerous examples of problems and their algorithms. The new edition includes a comprehensive chapter on parallel algorithms, and many enhancements.




Design and Analysis of Algorithms


Book Description

Focuses on the interplay between algorithm design and the underlying computational models.




Algorithms


Book Description

Algorithms: Design and Analysis is a textbook designed for undergraduate and postgraduate students of computer science engineering, information technology, and computer applications. The book offers adequate mix of both theoretical and mathematical treatment of the concepts. It covers the basics, design techniques, advanced topics and applications of algorithms. The book will also serve as a useful reference for researchers and practising programmers whointend to pursue a career in algorithm designing. The book is also indented for students preparing for campus interviews and competitive examinations.




Design and Analysis of Approximation Algorithms


Book Description

This book is intended to be used as a textbook for graduate students studying theoretical computer science. It can also be used as a reference book for researchers in the area of design and analysis of approximation algorithms. Design and Analysis of Approximation Algorithms is a graduate course in theoretical computer science taught widely in the universities, both in the United States and abroad. There are, however, very few textbooks available for this course. Among those available in the market, most books follow a problem-oriented format; that is, they collected many important combinatorial optimization problems and their approximation algorithms, and organized them based on the types, or applications, of problems, such as geometric-type problems, algebraic-type problems, etc. Such arrangement of materials is perhaps convenient for a researcher to look for the problems and algorithms related to his/her work, but is difficult for a student to capture the ideas underlying the various algorithms. In the new book proposed here, we follow a more structured, technique-oriented presentation. We organize approximation algorithms into different chapters, based on the design techniques for the algorithms, so that the reader can study approximation algorithms of the same nature together. It helps the reader to better understand the design and analysis techniques for approximation algorithms, and also helps the teacher to present the ideas and techniques of approximation algorithms in a more unified way.




Analysis and Design of Algorithms


Book Description

Analysis and Design of Algorithms provides a structured view of algorithm design techniques in a concise, easy-to-read manner. The book was written with an express purpose of being easy - to understand, read, and carry. It presents a pioneering approach in the teaching of algorithms, based on learning algorithm design techniques, and not merely solving a collection of problems. This allows students to master one design technique at a time and apply it to a rich variety of problems. Analysis and Design of Algorithms covers the algorithmic design techniques of divide and conquer, greedy, dynamic programming, branch and bound, and graph traversal. For each of these techniques, there are templates and guidelines on when to use and not to use each technique. Many sections contain innovative mnemonics to aid the readers in remembering the templates and key takeaways. Additionally, the book covers NP-completeness and the inherent hardness of problems. The third edition includes a new section on polynomial multiplication, as well as additional exercise problems, and an updated appendix. Written with input from students and professionals, Analysis and Design of Algorithms is well suited for introductory algorithm courses at the undergraduate and graduate levels. The structured organization of the text makes it especially appropriate for online and distance learning.




A Guide to Algorithm Design


Book Description

Presenting a complementary perspective to standard books on algorithms, A Guide to Algorithm Design: Paradigms, Methods, and Complexity Analysis provides a roadmap for readers to determine the difficulty of an algorithmic problem by finding an optimal solution or proving complexity results. It gives a practical treatment of algorithmic complexity and guides readers in solving algorithmic problems. Divided into three parts, the book offers a comprehensive set of problems with solutions as well as in-depth case studies that demonstrate how to assess the complexity of a new problem. Part I helps readers understand the main design principles and design efficient algorithms. Part II covers polynomial reductions from NP-complete problems and approaches that go beyond NP-completeness. Part III supplies readers with tools and techniques to evaluate problem complexity, including how to determine which instances are polynomial and which are NP-hard. Drawing on the authors’ classroom-tested material, this text takes readers step by step through the concepts and methods for analyzing algorithmic complexity. Through many problems and detailed examples, readers can investigate polynomial-time algorithms and NP-completeness and beyond.




Genome-Scale Algorithm Design


Book Description

Guided by standard bioscience workflows in high-throughput sequencing analysis, this book for graduate students, researchers, and professionals in bioinformatics and computer science offers a unified presentation of genome-scale algorithms. This new edition covers the use of minimizers and other advanced data structures in pangenomics approaches.




Algorithms


Book Description

Algorithms play a central role both in the theory and in the practice of computing. The goal of the authors was to write a textbook that would not trivialize the subject but would still be readable by most students on their own. The book contains over 120 exercises. Some of them are drills; others make important points about the material covered in the text or introduce new algorithms not covered there. The book also provides programming projects. From the Table of Contents: Chapter 1: Basic knowledge of Mathematics, Relations, Recurrence relation and Solution techniques, Function and Growth of functions. Chapter 2: Different Sorting Techniques and their analysis. Chapter 3: Greedy approach, Dynamic Programming, Branch and Bound techniques, Backtracking and Problems, Amortized analysis, and Order Statics. Chapter 4: Graph algorithms, BFS, DFS, Spanning Tree, Flow Maximization Algorithms. Shortest Path Algorithms. Chapter 5: Binary search tree, Red black Tree, Binomial heap, B-Tree and Fibonacci Heap. Chapter 6: Approximation Algorithms, Sorting Networks, Matrix operations, Fast Fourier Transformation, Number theoretic Algorithm, Computational geometry Randomized Algorithms, String matching, NP-Hard, NP-Completeness, Cooks theorem.




Recent Books