Allosteric Regulatory Enzymes


Book Description

This book covers the most recent developments in the analysis of allosteric enzymes and provides a logical introduction to the limits for enzyme function as dictated by the factors that are limits for life. The book presents a complete description of all the mechanisms used for changing enzyme activity. It is extensively illustrated to clarify kinetic and regulatory properties. Eight enzymes are used as model systems after extensive study of their mechanisms. Wherever possible, the human form of the enzyme is used to illustrate the regulatory features.




Allosteric Enzymes


Book Description

This book compiles detailed information concerning a dozen of the best known allosteric enzymes, and so allows the comparison of their regulatory mechanisms and the confrontation of these mechanisms with the theoretical models. Stimulating and unexpected ideas emerge from these comparisons and emphasize the importance of developing various methods of investigation such as crystallography, X-ray solution scattering, and the study of fast movements in proteins and site-directed mutagenesis. This book is addressed to students and researchers interested in structure-function relationship in proteins, enzymology and metabolic regulation. It is also a basis for teaching.




Protein Allostery in Drug Discovery


Book Description

The book focuses on protein allostery in drug discovery. Allosteric regulation, ʹthe second secret of lifeʹ, fine-tunes virtually most biological processes and controls physiological activities. Allostery can both cause human diseases and contribute to development of new therapeutics. Allosteric drugs exhibit unparalleled advantages compared to conventional orthosteric drugs, rendering the development of allosteric modulators as an appealing strategy to improve selectivity and pharmacodynamic properties in drug leads. The Series delineates the immense significance of protein allostery—as demonstrated by recent advances in the repertoires of the concept, its mechanistic mechanisms, and networks, characteristics of allosteric proteins, modulators, and sites, development of computational and experimental methods to predict allosteric sites, small-molecule allosteric modulators of protein kinases and G-protein coupled receptors, engineering allostery, and the underlying role of allostery in precise medicine. Comprehensive understanding of protein allostery is expected to guide the rational design of allosteric drugs for the treatment of human diseases. The book would be useful for scientists and students in the field of protein science and Pharmacology etc.




Biology for AP ® Courses


Book Description

Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.




Mechanisms of Catalysis


Book Description

The remarkable expansion of information leading to a deeper understanding of enzymes on the molecular level necessitated the development of this volume which not only introduces new topics to The Enzymes series but presents new information on some covered in Volume I and II of this edition.




Enzyme Kinetics


Book Description

Now in full color for a more intuitive learning experience, this new edition of the long-selling reference also features a number of new developments in methodology and the application of enzyme kinetics. Starting with a description of ligand binding equilibria, the experienced author goes on to discuss simple and complex enzyme reactions in kinetic terms. Special cases such as membrane-bound and immobilized enzymes are considered, as is the influence of external conditions, such as temperature and pH value. The final part of the book then covers a range of widely used measurement methods and compares their performance and scope of application. With its unique mix of theory and practical advice, this is an invaluable aid for teaching as well as for experimental work.




Enzyme Inhibitors and Activators


Book Description

Over the recent years, medicinal chemistry has become responsible for explaining interactions of chemical molecule processes such that many scientists in the life sciences from agronomy to medicine are engaged in medicinal research. This book contains an overview focusing on the research area of enzyme inhibitor and activator, enzyme-catalyzed biotransformation, usage of microbial enzymes, enzymes associated with programmed cell death, natural products as potential enzyme inhibitors, protease inhibitors from plants in insect pest management, peptidases, and renin-angiotensin system. The book provides an overview on basic issues and some of the recent developments in medicinal science and technology. Especially, emphasis is devoted to both experimental and theoretical aspect of modern medicine. The primary target audience for the book includes students, researchers, chemists, molecular biologists, medical doctors, pharmacologists, and professionals who are interested in associated areas. The textbook is written by international scientists with expertise in biochemistry, enzymology, molecular biology, and genetics, many of which are active in biochemical and pharmacological research. I would like to acknowledge the authors for their contribution to the book. We hope that the textbook will enhance the knowledge of scientists in the complexities of some medical approaches; it will stimulate both professionals and students to dedicate part of their future research in understanding relevant mechanisms and applications of pharmacology.







Cooperativity and Regulation in Biochemical Processes


Book Description

This is the first book that attempts to study the origin of cooperatvity in binding systems from the molecular point of view. The molecular approach provides a deeper insight into the mechanism of cooperativity and regulation, than the traditional phenomenological approach. This book uses the tools of statistical mechanics to present the molecular theory of cooperativity. Cooperativity is used in a variety of processes-such as loading and unloading of oxygen at relatively small pressure differences; maintaining an almost constant concentration of various compounds in living cells; and switching on and off the reading of genetic information. This book may be used as a textbook by graduate students in Chemistry, Biochemistry and Biophysics, and will also be of interest to researchers in theoretical biochemistry.