Amino Acids of the Glutamate Family: Functions beyond Primary Metabolism


Book Description

The life of proteins starts and ends as amino acids. In addition to the primary function as protein building blocks, amino acids serve multiple other purposes to make a plant's life worth living. This is true especially for the amino acids of the glutamate family, namely glutamate (Glu), glutamine (Gln), proline (Pro) and arginine (Arg), as well as the product of Glu decarboxylation, ?-aminobutyric acid (GABA). Synthesis, accumulation, interconversion and degradation of these five compounds contribute in many ways to the regulation of plant development and to responses to environmental challenges. Glu and Gln hold key positions as entry points and master regulators of nitrogen metabolism in plants, and have a pivotal role in the regulatory interplay between carbon and nitrogen metabolism. Pro and GABA are among the best-studied compatible osmolytes that accumulate in response to water deficit, yet the full range of protective functions is still to be revealed. Arg, with its exceptionally high nitrogen-to-carbon ratio, has long been recognized as a major storage form of organic nitrogen. Most of the enzymes involved in metabolism of the amino acids of the glutamate family in plants have been identified or can be predicted according to similarity with animal or microbial homologues. However, for some of these enzymes the detailed biochemical properties still remain to be determined in order to understand activities in vivo. Additionally, uncertainties regarding the subcellular localization of proteins and especially the lack of knowledge about intracellular transport proteins leave significant gaps in our understanding of the metabolic network connecting Glu, Gln, Pro, GABA and Arg. While anabolic reactions are distributed between the cytosol and chloroplasts, catabolism of the amino acids of the glutamate family takes place in mitochondria and has been implicated in fueling energy-demanding physiological processes such as root elongation, recovery from stress, bolting and pollen tube elongation. Exceeding the metabolic functions, the amino acids of the glutamate family were recently identified as important signaling molecules in plants. Extracellular Glu, GABA and a range of other metabolites trigger responses in plant cells that resemble the actions of Glu and GABA as neurotransmitters in animals. Plant homologues of the Glu-gated ion channels from mammals and protein kinase signaling cascades have been implicated in these responses. Pollen tube growth and guidance depend on GABA signaling and the root architecture is specifically regulated by Glu. GABA and Pro signaling or metabolism were shown to contribute to the orchestration of defense and programmed cell death in response to pathogen attacks. Pro signaling was additionally proposed to regulate developmental processes and especially sexual reproduction. Arg is tightly linked to nitric oxide (NO) production and signaling in plants, although Arg-dependent NO-synthases could still not be identified. Potentially Arg-derived polyamines constitute the missing link between Arg and NO signaling in response to stress. Taken together, the amino acids of the glutamate family emerge as important signaling molecules that orchestrate plant growth and development by integrating the metabolic status of the plant with environmental signals, especially in stressful conditions. This research topic collects contributions from different facets of glutamate family amino acid signaling or metabolism to bring together, and integrate in a comprehensive view the latest advances in our understanding of the multiple functions of Glu-derived amino acids in plants.




Glutathione in Plant Growth, Development, and Stress Tolerance


Book Description

Glutathione (γ-glutamyl-cysteinyl-glycine) is a ubiquitously distributed sulfurcontaining antioxidant molecule that plays key roles in the regulation of plant growth, development, and abiotic and biotic stress tolerance. It is one of the most powerful low-molecular-weight thiols, which rapidly accumulates in plant cells under stress. Recent in-depth studies on glutathione homeostasis (biosynthesis, degradation, compartmentalization, transport, and redox turnover) and the roles of glutathione in cell proliferation and environmental stress tolerance have provided new insights for plant biologists to conduct research aimed at deciphering the mechanisms associated with glutathione-mediated plant growth and stress responses, as well as to develop stress-tolerant crop plants. Glutathione has also been suggested to be a potential regulator of epigenetic modifications, playing important roles in the regulation of genes involved in the responses of plants to changing environments. The dynamic relationship between reduced glutathione (GSH) and reactive oxygen species (ROS) has been well documented, and glutathione has been shown to participate in several cell signaling and metabolic processes, involving the synthesis of protein, the transport of amino acids, DNA repair, the control of cell division, and programmed cell death. Two genes, gamma-glutamylcysteine synthetase (GSH1) and glutathione synthetase (GSH2), are involved in GSH synthesis, and genetic manipulation of these genes can modulate cellular glutathione levels. Any fluctuations in cellular GSH and oxidized glutathione (GSSG) levels have profound effects on plant growth and development, as glutathione is associated with the regulation of the cell cycle, redox signaling, enzymatic activities, defense gene expression, systemic acquired resistance, xenobiotic detoxification, and biological nitrogen fixation. Being a major constituent of the glyoxalase system and ascorbate-glutathione cycle, GSH helps to control multiple abiotic and biotic stress signaling pathways through the regulation of ROS and methylglyoxal (MG) levels. In addition, glutathione metabolism has the potential to be genetically or biochemically manipulated to develop stress-tolerant and nutritionally improved crop plants. Although significant progress has been made in investigating the multiple roles of glutathione in abiotic and biotic stress tolerance, many aspects of glutathione-mediated stress responses require additional research. The main objective of this volume is to explore the diverse roles of glutathione in plants by providing basic, comprehensive, and in-depth molecular information for advanced students, scholars, teachers, and scientists interested in or already engaged in research that involves glutathione. Finally, this book will be a valuable resource for future glutathione-related research and can be considered as a textbook for graduate students and as a reference book for frontline researchers working on glutathione metabolism in relation to plant growth, development, stress responses, and stress tolerance.




Amino Acids of the Glutamate Family: Functions Beyond Primary Metabolism


Book Description

The life of proteins starts and ends as amino acids. In addition to the primary function as protein building blocks, amino acids serve multiple other purposes to make a plant's life worth living. This is true especially for the amino acids of the glutamate family, namely glutamate (Glu), glutamine (Gln), proline (Pro) and arginine (Arg), as well as the product of Glu decarboxylation, ?-aminobutyric acid (GABA). Synthesis, accumulation, interconversion and degradation of these five compounds contribute in many ways to the regulation of plant development and to responses to environmental challenges. Glu and Gln hold key positions as entry points and master regulators of nitrogen metabolism in plants, and have a pivotal role in the regulatory interplay between carbon and nitrogen metabolism. Pro and GABA are among the best-studied compatible osmolytes that accumulate in response to water deficit, yet the full range of protective functions is still to be revealed. Arg, with its exceptionally high nitrogen-to-carbon ratio, has long been recognized as a major storage form of organic nitrogen. Most of the enzymes involved in metabolism of the amino acids of the glutamate family in plants have been identified or can be predicted according to similarity with animal or microbial homologues. However, for some of these enzymes the detailed biochemical properties still remain to be determined in order to understand activities in vivo. Additionally, uncertainties regarding the subcellular localization of proteins and especially the lack of knowledge about intracellular transport proteins leave significant gaps in our understanding of the metabolic network connecting Glu, Gln, Pro, GABA and Arg. While anabolic reactions are distributed between the cytosol and chloroplasts, catabolism of the amino acids of the glutamate family takes place in mitochondria and has been implicated in fueling energy-demanding physiological processes such as root elongation, recovery from stress, bolting and pollen tube elongation. Exceeding the metabolic functions, the amino acids of the glutamate family were recently identified as important signaling molecules in plants. Extracellular Glu, GABA and a range of other metabolites trigger responses in plant cells that resemble the actions of Glu and GABA as neurotransmitters in animals. Plant homologues of the Glu-gated ion channels from mammals and protein kinase signaling cascades have been implicated in these responses. Pollen tube growth and guidance depend on GABA signaling and the root architecture is specifically regulated by Glu. GABA and Pro signaling or metabolism were shown to contribute to the orchestration of defense and programmed cell death in response to pathogen attacks. Pro signaling was additionally proposed to regulate developmental processes and especially sexual reproduction. Arg is tightly linked to nitric oxide (NO) production and signaling in plants, although Arg-dependent NO-synthases could still not be identified. Potentially Arg-derived polyamines constitute the missing link between Arg and NO signaling in response to stress. Taken together, the amino acids of the glutamate family emerge as important signaling molecules that orchestrate plant growth and development by integrating the metabolic status of the plant with environmental signals, especially in stressful conditions. This research topic collects contributions from different facets of glutamate family amino acid signaling or metabolism to bring together, and integrate in a comprehensive view the latest advances in our understanding of the multiple functions of Glu-derived amino acids in plants.




Amino Acids in Higher Plants


Book Description

Amino acids play a role in the defence mechanisms and stress responses of plants, as well as in food quality and safety for humans and animals. Recent advances in the field make a comprehensive overview of the information a necessity; this book collates chapters on plant enzymes and metabolism, modulation, molecular aspects and secondary products. Also including information on ecology, the environment and mammalian nutrition and toxicology, it provides an authoritative resource.




Amino Acids and Their Derivatives in Higher Plants


Book Description

For 150 years scientists at the Rothamsted Experimental Station have studied aspects of plant nitrogen nutrition and amino acid biosynthesis. This book is the result of a meeting held to mark this century and a half of work there. The papers look at the significant progress in understanding the biochemistry of amino acids recently achieved, in the light of this history of research. Leading researchers from around the world have contributed authoritative chapters on protein amino acids, non-protein amino acids, betaines, glutathione, polyamines and other secondary metabolites derived from amino acids. As well as being essential in some animals' nutrition, these compounds can have important roles in defending against herbivores, insects and disease. An understanding of these compounds can help in devising better crop protection and production methods.




Aquaporins: Dynamic Role and Regulation


Book Description

Aquaporins (AQPs), a class of integral membrane proteins, form channels facilitating movement of water and many other solutes. In solute transport systems of all living organisms including plants, animals and fungi, AQPs play a vital role. Plants contain a much higher number of AQP genes compared to animals, the likely consequence of genome duplication events and higher ploidy levels. As a result of duplication and subsequent diversification, plant AQPs have evolved several subfamilies with very diverse functions. Plant AQPs are highly selective for specific solutes because of their unique structural features. For instance, ar/R selectivity filters and NPA domains have been found to be key elements in governing solute permeability through the AQP channels. Combination of conserved motifs and specific amino acids influencing pore morphology appears to regulate the permeability of specific solutes such as water, urea, CO2, H2O2, boric acid, silicic acid and many more. The discovery of novel AQPs has been accelerated over the last few years with the increasing availability of genomic and transcriptomic data. The expanding number of well characterised AQPs provides opportunities to understand factors influencing water transport, nutritional uptake, and elemental balance. Homology-based search tools and phylogenetic analyses offer efficient strategies for AQP identification. Subsequent characterization can be based on different approaches involving proteomics, genomics, and transcriptomic tools. The combination of these technological advances make it possible to efficiently study the inter-dependency of AQPs, regulation through phosphorylation and reversible phosphorylation, networking with other transporters, structural features, pH gating systems, trafficking and degradation. Several studies have supported the role of AQPs in differential phenotypic responses to abiotic and biotic stress in plants. Crop improvement programs aiming for the development of cultivars with higher tolerance against stresses like drought, flooding, salinity and many biotic diseases, can explore and exploit the finely tuned AQP-regulated transport system. For instance, a promising approach in crop breeding programs is the utilization of genetic variation in AQPs for the development of stress tolerant cultivars. Similarly, transgenic and mutagenesis approaches provide an opportunity to better understand the AQP transport system with subsequent applications for the development of climate-smart drought-tolerant cultivars. The contributions to this Frontiers in Plant Science Research Topic have highlighted the evolution and phylogenetic distribution of AQPs in several plant species. Numerous aspects of regulation that seek to explain AQP-mediated transport system have been addressed. These contributions will help to improve our understanding of AQPs and their role in important physiological aspects and will bring AQP research closer to practical applications.




Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants


Book Description

In nature, plants are constantly challenged by various abiotic and biotic stresses that can restrict their growth, development and yields. In the course of their evolution, plants have evolved a variety of sophisticated and efficient mechanisms to sense, respond to, and adapt to changes in the surrounding environment. A common defensive mechanism activated by plants in response to abiotic stress is the production and accumulation of compatible solutes (also called osmolytes). This include amino acids (mainly proline), amines (such as glycinebetaine and polyamines), and sugars (such as trehalose and sugar alcohols), all of which are readily soluble in water and non-toxic at high concentrations. The metabolic pathways involved in the biosynthesis and catabolism of compatible solutes, and the mechanisms that regulate their cellular concentrations and compartmentalization are well characterized in many important plant species. Numerous studies have provided evidence that enhanced accumulation of compatible solutes in plants correlates with increased resistance to abiotic stresses. New insights into the mechanisms associated with osmolyte accumulation in transgenic plants and the responses of plants to exogenous application of osmolyte, will further enhance our understanding of the mechanisms by which compatible solutes help to protect plants from damage due to abiotic stress and the potential roles compatible solutes could play in improving plants growth and development under optimal conditions for growth. Although there has been significant progress made in understanding the multiple roles of compatible solute in abiotic stress tolerance, many aspects associated with compatible solute-mediated abiotic stress responses and stress tolerance still require more research. As well as providing basic up-to-date information on the biosynthesis, compartmentalization and transport of compatible solute in plants, this book will also give insights into the direct or indirect involvement of these key compatible solutes in many important metabolic processes and physiological functions, including their antioxidant and signaling functions, and roles in modulating plant growth, development and abiotic stress tolerance. In this book, Osmoprotectant-mediated abiotic stress tolerance in plants: recent advances and future perspectives, we present a collection of 16 chapters written by leading experts engaged with compatible solute-induced abiotic stress tolerance in plants. The main objective of this volume is to promote the important roles of these compatible solutes in plant biology, by providing an integrated and comprehensive mix of basic and advanced information for students, scholars and scientists interested in, or already engaged in, research involving osmoprotectant. Finally, this book will be a valuable resource for future environmental stress-related research, and can be considered as a textbook for graduate students and as a reference book for front-line researchers working on the relationships between osmoprotectant and abiotic stress responses and tolerance in plants.




Plant Systems Biology


Book Description

In this authoritative guide, expert investigators provide cutting-edge chapters dealing with modern plant systems biology approaches. This work provides the kind of detailed description and implementation advice that is crucial for getting optimal results.