Low-Speed Wind Tunnel Testing


Book Description

A brand-new edition of the classic guide on low-speed wind tunnel testing While great advances in theoretical and computational methods have been made in recent years, low-speed wind tunnel testing remains essential for obtaining the full range of data needed to guide detailed design decisions for many practical engineering problems. This long-awaited Third Edition of William H. Rae, Jr.'s landmark reference brings together essential information on all aspects of low-speed wind tunnel design, analysis, testing, and instrumentation in one easy-to-use resource. Written by authors who are among the most respected wind tunnel engineers in the world, this edition has been updated to address current topics and applications, and includes coverage of digital electronics, new instrumentation, video and photographic methods, pressure-sensitive paint, and liquid crystal-based measurement methods. The book is organized for quick access to topics of interest, and examines basic test techniques and objectives of modeling and testing aircraft designs in low-speed wind tunnels, as well as applications to fluid motion analysis, automobiles, marine vessels, buildings, bridges, and other structures subject to wind loading. Supplemented with real-world examples throughout, Low-Speed Wind Tunnel Testing, Third Edition is an indispensable resource for aerospace engineering students and professionals, engineers and researchers in the automotive industries, wind tunnel designers, architects, and others who need to get the most from low-speed wind tunnel technology and experiments in their work.




Advances in Turbulence VII


Book Description

Advances in Turbulence VII contains an overview of the state of turbulence research with some bias towards work done in Europe. It represents an almost complete collection of the invited and contributed papers delivered at the Seventh European Turbulence Conference, sponsored by EUROMECH and ERCOFTAC and organized by the Observatoire de la Côte d'Azur. New high-Reynolds number experiments combined with new techniques of imaging, non-intrusive probing, processing and simulation provide high-quality data which put significant constraints on possible theories. For the first time, it has been shown, for a class of passive scalar problems, why dimensional analysis sometimes gives the wrong answers and how anomalous intermittency corrections can be calculated from first principles. The volume is thus geared towards specialists in the area of flow turbulence who could not attend the conference as well as anybody interested in this rapidly moving field.




Computational Fluid and Solid Mechanics 2003


Book Description

Bringing together the world's leading researchers and practitioners of computational mechanics, these new volumes meet and build on the eight key challenges for research and development in computational mechanics.Researchers have recently identified eight critical research tasks facing the field of computational mechanics. These tasks have come about because it appears possible to reach a new level of mathematical modelling and numerical solution that will lead to a much deeper understanding of nature and to great improvements in engineering design.The eight tasks are: - The automatic solution of mathematical models - Effective numerical schemes for fluid flows - The development of an effective mesh-free numerical solution method - The development of numerical procedures for multiphysics problems - The development of numerical procedures for multiscale problems - The modelling of uncertainties - The analysis of complete life cycles of systems - Education - teaching sound engineering and scientific judgement Readers of Computational Fluid and Solid Mechanics 2003 will be able to apply the combined experience of many of the world's leading researchers to their own research needs. Those in academic environments will gain a better insight into the needs and constraints of the industries they are involved with; those in industry will gain a competitive advantage by gaining insight into the cutting edge research being carried out by colleagues in academia. Features - Bridges the gap between academic researchers and practitioners in industry - Outlines the eight main challenges facing Research and Design in Computational mechanics and offers new insights into the shifting the research agenda - Provides a vision of how strong, basic and exciting education at university can be harmonized with life-long learning to obtain maximum value from the new powerful tools of analysis




Advances in Applied Mechanical Engineering


Book Description

This book presents select peer reviewed proceedings of the International Conference on Applied Mechanical Engineering Research (ICAMER 2019). The books examines various areas of mechanical engineering namely design, thermal, materials, manufacturing and industrial engineering covering topics like FEA, optimization, vibrations, condition monitoring, tribology, CFD, IC engines, turbo-machines, automobiles, manufacturing processes, machining, CAM, additive manufacturing, modelling and simulation of manufacturing processing, optimization of manufacturing processing, supply chain management, and operations management. In addition, recent studies on composite materials, materials characterization, fracture and fatigue, advanced materials, energy storage, green building, phase change materials and structural change monitoring are also covered. Given the contents, this book will be useful for students, researchers and professionals working in mechanical engineering and allied fields.




Proceedings of the International Conference on Modern Research in Aerospace Engineering


Book Description

This book includes high-quality research papers presenting the latest advances in aerospace and related engineering fields. The papers are organized according to six broad areas (i) Aerospace Propulsion, (ii) Space Research, Avionics and Instrumentation, (iii) Aerodynamics Wind Tunnel and Computational fluid dynamics (CFD), (iv) Structural Analysis and Finite Element Method (FEM), (v) Materials, Manufacturing and Air Safety and (vi) Aircraft Environmental and Control System and Stability, making it easy for readers to find the information they require. Offering insights into the state of the art in aerospace engineering, the original research presented is valuable to academics, researchers, undergraduate and postgraduate students as well as professionals in industry and R&D. The clearly written book can be used for the validation of data, and the development of experimental and simulation techniques as well as other mathematical approaches.




Facing the Heat Barrier


Book Description

This volume from The NASA History Series presents an overview of the science of hypersonics, the study of flight at speeds at which the physics of flows is dominated by aerodynamic heating. The survey begins during the years immediately following World War II, with the first steps in hypersonic research: the development of missile nose cones and the X-15; the earliest concepts of hypersonic propulsion; and the origin of the scramjet engine. Next, it addresses the re-entry problem, which came to the forefront during the mid-1950s, showing how work in this area supported the manned space program and contributed to the development of the orbital shuttle. Subsequent chapters explore the fading of scramjet studies and the rise of the National Aerospace Plane (NASP) program of 1985–95, which sought to lay groundwork for single-stage vehicles. The program's ultimate shortcomings — in terms of aerodynamics, propulsion, and materials — are discussed, and the book concludes with a look at hypersonics in the post-NASP era, including the development of the X-33 and X-34 launch vehicles, further uses for scramjets, and advances in fluid mechanics. Clearly, ongoing research in hypersonics has yet to reach its full potential, and readers with an interest in aeronautics and astronautics will find this book a fascinating exploration of the field's history and future.