Foundations of Environmental Physics


Book Description

Foundations of Environmental Physics is designed to focus students on the current energy and environmental problems facing society, and to give them the critical thinking and computational skills needed to sort out potential solutions. From its pedagogical approach, students learn that a simple calculation based on first principles can often reveal the plausibility (or implausibility) of a proposed solution or new technology. Throughout its chapters, the text asks students to apply key concepts to current data (which they are required to locate using the Internet and other sources) to get a clearer picture of the most pressing issues in environmental science. The text begins by exploring how changes in world population impact all aspects of the environment, particularly with respect to energy use. It then discusses what the first and second laws of thermodynamics tell us about renewable and nonrenewable energy; how current energy use is changing the global climate; and how alternative technologies can be evaluated through scientific risk assessment. In approaching real-world problems, students come to understand the physical principles that underlie scientific findings. This informative and engaging textbook offers what prospective scientists, managers, and policymakers need most: the knowledge to understand environmental threats and the skills to find solutions.




U.S. Health in International Perspective


Book Description

The United States is among the wealthiest nations in the world, but it is far from the healthiest. Although life expectancy and survival rates in the United States have improved dramatically over the past century, Americans live shorter lives and experience more injuries and illnesses than people in other high-income countries. The U.S. health disadvantage cannot be attributed solely to the adverse health status of racial or ethnic minorities or poor people: even highly advantaged Americans are in worse health than their counterparts in other, "peer" countries. In light of the new and growing evidence about the U.S. health disadvantage, the National Institutes of Health asked the National Research Council (NRC) and the Institute of Medicine (IOM) to convene a panel of experts to study the issue. The Panel on Understanding Cross-National Health Differences Among High-Income Countries examined whether the U.S. health disadvantage exists across the life span, considered potential explanations, and assessed the larger implications of the findings. U.S. Health in International Perspective presents detailed evidence on the issue, explores the possible explanations for the shorter and less healthy lives of Americans than those of people in comparable countries, and recommends actions by both government and nongovernment agencies and organizations to address the U.S. health disadvantage.




Principles of Environmental Physics


Book Description

Thoroughly revised and up-dated edition of a highly successful textbook.




Environmental Systems Science


Book Description

Environmental Systems Science: Theory and Practical Applications looks at pollution and environmental quality from a systems perspective. Credible human and ecological risk estimation and prediction methods are described, including life cycle assessment, feasibility studies, pollution control decision tools, and approaches to determine adverse outcome pathways, fate and transport, sampling and analysis, and cost-effectiveness. The book brings translational science to environmental quality, applying groundbreaking methodologies like informatics, data mining, and applications of secondary data systems. Multiple human and ecological variables are introduced and integrated to support calculations that aid environmental and public health decision making. The book bridges the perspectives of scientists, engineers, and other professionals working in numerous environmental and public health fields addressing problems like toxic substances, deforestation, climate change, and loss of biological diversity, recommending sustainable solutions to these and other seemingly intractable environmental problems. The causal agents discussed include physical, chemical, and biological agents, such as per- and polyfluoroalkyl substances (PFAS), SARS-CoV-2 (the COVID-19 virus), and other emerging contaminants. - Provides an optimistic and interdisciplinary approach, underpinned by scientific first principles and theory to evaluate pollutant sources and sinks, applying biochemodynamic methods, measurements and models - Deconstructs prior initiatives in environmental assessment and management using an interdisciplinary approach to evaluate what has worked and why - Lays out a holistic understanding of the real impact of human activities on the current state of pollution, linking the physical sciences and engineering with socioeconomic, cultural perspectives, and environmental justice - Takes a life cycle view of human and ecological systems, from the molecular to the planetary scale, integrating theories and tools from various disciplines to assess the current and projected states of environmental quality - Explains the elements of risk, reliability and resilience of built and natural systems, including discussions of toxicology, sustainability, and human-pollutant interactions based on spatial, biological, and human activity information, i.e. the exposome




The Urgency Of The Multi-Model Approach In Learning Environmental Physics To Achieve Learning Goals


Book Description

"The Urgency Of The Multi-Model Approach In Learning Environmental Physics To Achieve Learning Goals" explores the significance of integrating multiple learning models to enhance creative thinking skills in the context of environmental physics education. Drawing on research-based approaches such as Creative Problem Solving (CPS), Inquiry-Based Learning (IBL), Problem-Based Learning (PBL), Project-Based Learning (PjBL), and more, this book offers valuable insights into creating dynamic and engaging learning environments. The book emphasizes the combined use of IBL, PBL, and PjBL models to establish a structured learning experience that fosters cognitive development. IBL facilitates the advancement of students' cognitive abilities, including creative thinking, problem-solving, and effective communication skills. PBL encourages active participation, ensuring students are fully engaged in the learning process. Additionally, PjBL supports students' psychomotor skills, particularly in the areas of questioning and knowledge articulation. By implementing this multi-model approach, the book aims to optimize students' creative thinking skills, leading to the attainment of learning goals in the field of environmental physics. The combination of these learning models creates an exciting and dynamic educational setting that promotes deep understanding, critical thinking, and effective problem-solving. "The Urgency Of The Multi-Model Approach In Learning Environmental Physics To Achieve Learning Goals" is a valuable resource for educators, researchers, and curriculum developers seeking innovative strategies to enhance students' creative thinking abilities and promote successful learning outcomes in environmental physics education.




Introduction to Environmental Soil Physics


Book Description

An abridged, student-oriented edition of Hillel's earlier published Environmental Soil Physics, Introduction to Environmental Soil Physics is a more succinct elucidation of the physical principles and processes governing the behavior of soil and the vital role it plays in both natural and managed ecosystems. The textbook is self-contained and self-explanatory, with numerous illustrations and sample problems. Based on sound fundamental theory, the textbook leads to a practical consideration of soil as a living system in nature and illustrates the influences of human activity upon soil structure and function. Students, as well as other readers, will better understand the importance of soils and the pivotal possition they occupy with respect to careful and knowledgeable conservation. - Written in an engaging and clear style, posing and resolving issues relevant to the terrestrial environment - Explores the gamut of the interactions among the phases in the soil and the dynamic interconnection of the soil with the subterranean and atmospheric domains - Reveals the salient ideas, approaches, and methods of environmental soil physics - Includes numerous illustrative exercises, which are explicitly solved - Designed to serve for classroom and laboratory instruction, for self-study, and for reference - Oriented toward practical problems in ecology, field-scale hydrology, agronomy, and civil engineering - Differs from earlier texts in its wider scope and holistic environmental conception




Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics


Book Description

Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics reunites some of the most recent work from the French research group MeGe GDR (National Research Group on Multiscale and Multiphysics Couplings in Geo-Environmental Mechanics) on the theme of multi-scale and multi-physics modeling of geomaterials, with a special focus on micromechanical aspects. Its offers readers a glimpse into the current state of scientific knowledge in the field, together with the most up-to-date tools and methods of analysis available. Each chapter represents a study with a different viewpoint, alternating between phenomenological/micro-mechanically enriched and purely micromechanical approaches. Throughout the book, contributing authors will highlight advances in geomaterials modeling, while also pointing out practical implications for engineers. Topics discussed include multi-scale modeling of cohesive-less geomaterials, including multi-physical processes, but also the effects of particle breakage, large deformations on the response of the material at the specimen scale and concrete materials, together with clays as cohesive geomaterials. The book concludes by looking at some engineering problems involving larger scales. - Identifies contributions in the field of geomechanics - Focuses on multi-scale linkages at small scales - Presents numerical simulations by discrete elements and tools of homogenization or change of scale




An Introduction to the Environmental Physics of Soil, Water and Watersheds


Book Description

This introductory textbook describes the nature of the Earth's environment and its physical processes so as to highlight environmental concerns arising from human use and misuse of soil and water resources. The author provides a thorough introduction to the basic issues regarding the sustainable, productive use of land resources that is vital in maintaining healthy rivers and good groundwater qualities. He develops a quantitative approach to studying these growing environmental concerns in a way that does not require prior knowledge of the physical sciences or calculus. The straightforward writing style, lack of prerequisite knowledge and copious illustrations make this textbook suitable for introductory university courses, as well as being a useful primer for research and management staff in environmental and resources management organisations. Each chapter ends with a set of student exercises for which solutions are available from [email protected].




Physics and the Environment


Book Description

Physics and the Environment directly connects the physical world to environmental issues that the world is facing today and will face in the future. It shows how the first and second laws of thermodynamics limit the efficiencies of fossil fuel energy conversions to less than 100%, while also discussing how clever technologies can enhance overall performance. It also extensively discusses renewable forms of energy, their physical constraints and how we must use science and engineering as tools to solve problems instead of opinion and politics. Dr. Kyle Forinash takes you on a journey of understanding our mature and well developed technologies for using fossil fuel resources and how we are unlikely to see huge gains in their efficiency as well as why their role in climate change ought to be an argument for their replacement sooner rather than later. He also discusses the newest technologies in employing renewable resources and how it is important to understand their physical constrains in order to make a smooth transition to them. An entire chapter is dedicated to energy storage, a core question in renewable energy as well as another chapter on the technical issues of nuclear energy. The book ends with a discussion on how no environmental solution, no matter how clever from a technical aspect, will succeed if there are cheaper alternative, even if those alternatives have undesirable features associated with them.




Environmental Physics


Book Description

First Published in 2002. Environmental Physics is a comprehensive introduction to the physical concepts underlying environmental science. The importance and relevance of physics is emphasised by its application to real environmental problems with a wide range of case studies. Applications included cover energy use and production, global climate, the physics of living things, radioactivity, environmental remote sensing, noise pollution and the physics of the Earth. The book makes the subject accessible to those with little physics background, keeping mathematical treatment straightforward. The text is lively and informative, and is supplemented by numerous illustrations, photos, tables of useful data, and a glossary of key terms.