Modelling and Experimentation in Two-Phase Flow


Book Description

This is an up-to-date review of recent advances in the study of two-phase flows, with focus on gas-liquid flows, liquid-liquid flows, and particle transport in turbulent flows. The book is divided into several chapters, which after introducing basic concepts lead the reader through a more complex treatment of the subjects. The reader will find an extensive review of both the older and the more recent literature, with abundance of formulas, correlations, graphs and tables. A comprehensive (though non exhaustive) list of bibliographic references is provided at the end of each chapter. The volume is especially indicated for researchers who would like to carry out experimental, theoretical or computational work on two-phase flows, as well as for professionals who wish to learn more about this topic.







Nonlinear Analysis of Gas-Water/Oil-Water Two-Phase Flow in Complex Networks


Book Description

Understanding the dynamics of multi-phase flows has been a challenge in the fields of nonlinear dynamics and fluid mechanics. This chapter reviews our work on two-phase flow dynamics in combination with complex network theory. We systematically carried out gas-water/oil-water two-phase flow experiments for measuring the time series of flow signals which is studied in terms of the mapping from time series to complex networks. Three network mapping methods were proposed for the analysis and identification of flow patterns, i.e. Flow Pattern Complex Network (FPCN), Fluid Dynamic Complex Network (FDCN) and Fluid Structure Complex Network (FSCN). Through detecting the community structure of FPCN based on K-means clustering, distinct flow patterns can be successfully distinguished and identified. A number of FDCN’s under different flow conditions were constructed in order to reveal the dynamical characteristics of two-phase flows. The FDCNs exhibit universal power-law degree distributions. The power-law exponent and the network information entropy are sensitive to the transition among different flow patterns, which can be used to characterize nonlinear dynamics of the two-phase flow. FSCNs were constructed in the phase space through a general approach that we introduced. The statistical properties of FSCN can provide quantitative insight into the fluid structure of two-phase flow. These interesting and significant findings suggest that complex networks can be a potentially powerful tool for uncovering the nonlinear dynamics of two-phase flows.




Proceedings of the 1st International Conference on Numerical Modelling in Engineering


Book Description

This book gathers outstanding papers on numerical modeling in Mechanical Engineering (Volume 2) as part of the proceedings of the 1st International Conference on Numerical Modeling in Engineering (NME 2018), which was held in Ghent, Belgium. The overall objective of the conference was to bring together international scientists and engineers in academia and industry from fields related to advanced numerical techniques, such as the finite element method (FEM), boundary element method (BEM), isogeometric analysis (IGA), etc., and their applications to a wide range of engineering disciplines. This book addresses various industrial engineering applications of numerical simulations to Mechanical and Materials Engineering, including: Aerospace applications, Acoustic analysis, Biomechanical applications, Contact problems and wear, Heat transfer analysis, Vibration and dynamics, Transient analysis, Nonlinear analysis, Composite materials, Polymers, Metal alloys, Fracture mechanics, Fatigue of materials, Creep behavior, Phase transformation, and Crystal plasticity.




Computational Methods in Multiphase Flow V


Book Description

Together with turbulence, multiphase flow remains one of the most challenging areas of computational mechanics and experimental methods and numerous problems remain unsolved to date. Multiphase flows are found in all areas of technology, at all length scales and flow regimes. The fluids involved can be compressible or incompressible, linear or nonlinear. Because of the complexity of the problems, it is often essential to utilize advanced computational and experimental methods to solve the complex equations that describe them. Challenges in these simulations include modelling and tracking interfaces, dealing with multiple length scales, modelling nonlinear fluids, treating drop breakup and coalescence, characterizing phase structures, and many others. Experimental techniques, although expensive and difficult to perform, are essential to validate models. This book contains papers presented at the Fifth International Conference on Computational Methods in Multiphase Flow, which are grouped into the following topics: Multiphase Flow Simulation; Interaction of Gas, Liquids and Solids; Turbulent Flow; Environmental Multiphase Flow; Bubble and Drop Dynamics; Flow in Porous Media; Heat Transfer; Image Processing; Interfacial Behaviour.




Fundamentals of Nuclear Engineering


Book Description

Fundamental of Nuclear Engineering is derived from over 25 years of teaching undergraduate and graduate courses on nuclear engineering. The material has been extensively class tested and provides the most comprehensive textbook and reference on the fundamentals of nuclear engineering. It includes a broad range of important areas in the nuclear engineering field; nuclear and atomic theory; nuclear reactor physics, design, control/dynamics, safety and thermal-hydraulics; nuclear fuel engineering; and health physics/radiation protection. It also includes the latest information that is missing in traditional texts, such as space radiation. The aim of the book is to provide a source for upper level undergraduate and graduate students studying nuclear engineering.







Handbook of Natural Gas Transmission and Processing


Book Description

A unique, well-documented, and forward-thinking work, the second edition of Handbook of Natural Gas Transmission and Processing continues to present a thoroughly updated, authoritative, and comprehensive description of all major aspects of natural gas transmission and processing. It provides an ideal platform for engineers, technologists, and operations personnel working in the natural gas industry to get a better understanding of any special requirements for optimal design and operations of natural gas transmission pipelines and processing plants. - First book of its kind that covers all aspects of natural gas transmission and processing - Provides pivotal updates on the latest technologies, which have not been addressed in-depth in any existing books - Offers practical advice for design and operation based on sound engineering principles and established techniques - Examines ways to select the best processing route for optimal design of gas-processing plants - Contains new discussions on process modeling, control, and optimization in gas processing industry




Ullmann's Energy


Book Description

This three-volume handbook contains a wealth of information on energy sources, energy generation and storage, fossil and renewable fuels as well as the associated processing technology. Fossil as well as renewable fuels, nuclear technology, power generation and storage technologies are treated side by side, providing a unique overview of the entire global energy industry. The result is an in-depth survey of industrial-scale energy technology. Your personal ULLMANN’S: A carefully selected "best of" compilation of topical articles brings the vast knowledge of the Ullmann’s encyclopedia to the desks of energy and process engineers Chemical and physical characteristics, production processes and production figures, main applications, toxicology and safety information are all found here in one single resource New or updated articles include classical topics such as coal technologies, oil and gas as well as cutting-edge technologies like biogas, thermoelectricty and solar technology 3 Volumes




Intelligent Computing Applications for Sustainable Real-World Systems


Book Description

This book delves into various solution paradigms such as artificial neural network, support vector machine, wavelet transforms, evolutionary computing, swarm intelligence. During the last decade, novel solution technologies based on human and species intelligence have gained immense popularity due to their flexible and unconventional approach. New analytical tools are also being developed to handle big data processing and smart decision making. The idea behind compiling this work is to familiarize researchers, academicians, industry persons and students with various applications of intelligent techniques for producing sustainable, cost-effective and robust solutions of frequently encountered complex, real-world problems in engineering and science disciplines. The practical problems in smart grids, communication, waste management, elimination of harmful elements from nature, etc., are identified, and smart and optimal solutions are proposed.