An Introduction to Inverse Limits with Set-valued Functions


Book Description

Inverse limits with set-valued functions are quickly becoming a popular topic of research due to their potential applications in dynamical systems and economics. This brief provides a concise introduction dedicated specifically to such inverse limits. The theory is presented along with detailed examples which form the distinguishing feature of this work. The major differences between the theory of inverse limits with mappings and the theory with set-valued functions are featured prominently in this book in a positive light. The reader is assumed to have taken a senior level course in analysis and a basic course in topology. Advanced undergraduate and graduate students, and researchers working in this area will find this brief useful. ​







Inverse Limits


Book Description

Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The book begins with an introduction through inverse limits on [0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete the book. Although it is not a book on dynamics, the influence of dynamics can be seen throughout; for instance, it includes studies of inverse limits with maps from families of maps that are of interest to dynamicists such as the logistic and the tent families. This book will serve as a useful reference to graduate students and researchers in continuum theory and dynamical systems. Researchers working in applied areas who are discovering inverse limits in their work will also benefit from this book.




Topics on Continua


Book Description

This book is a significant companion text to the existing literature on continuum theory. It opens with background information of continuum theory, so often missing from the preceding publications, and then explores the following topics: inverse limits, the Jones set function T, homogenous continua, and n-fold hyperspaces. In this new edition of the book, the author builds on the aforementioned topics, including the unprecedented presentation of n-fold hyperspace suspensions and induced maps on n-fold hyperspaces. The first edition of the book has had a remarkable impact on the continuum theory community. After twelve years, this updated version will also prove to be an excellent resource within the field of topology.




Set-Valued, Convex, and Nonsmooth Analysis in Dynamics and Control


Book Description

Set-valued analysis, convex analysis, and nonsmooth analysis are relatively modern branches of mathematical analysis that have become increasingly relevant in current control theory and control engineering literature. This book serves as a broad introduction to analytical tools in these fields and to their applications in dynamical and control systems and is the first to cover these topics with this scope and at this level. Both continuous-time and discrete-time mutlivalued dynamics, modeled by differential and difference inclusions, are considered. Set-Valued, Convex, and Nonsmooth Analysis in Dynamics and Control: An Introduction is aimed at graduate students in control engineering and applied mathematics and researchers in control engineering who have no prior exposure to set-valued, convex, and nonsmooth analysis. The book will also be of interest to advanced undergraduate mathematics students and mathematicians with no prior exposure to the topic. The expected mathematical background is a course on nonlinear differential equations / dynamical systems and a course on real analysis. Knowledge of some control theory is helpful, but not essential.




Implicit Functions and Solution Mappings


Book Description

The implicit function theorem is one of the most important theorems in analysis and its many variants are basic tools in partial differential equations and numerical analysis. This second edition of Implicit Functions and Solution Mappings presents an updated and more complete picture of the field by including solutions of problems that have been solved since the first edition was published, and places old and new results in a broader perspective. The purpose of this self-contained work is to provide a reference on the topic and to provide a unified collection of a number of results which are currently scattered throughout the literature. Updates to this edition include new sections in almost all chapters, new exercises and examples, updated commentaries to chapters and an enlarged index and references section.




Topology


Book Description

Topology, Volume I deals with topology and covers topics ranging from operations in logic and set theory to Cartesian products, mappings, and orderings. Cardinal and ordinal numbers are also discussed, along with topological, metric, and complete spaces. Great use is made of closure algebra. Comprised of three chapters, this volume begins with a discussion on general topological spaces as well as their specialized aspects, including regular, completely regular, and normal spaces. Fundamental notions such as base, subbase, cover, and continuous mapping, are considered, together with operations such as the exponential topology and quotient topology. The next chapter is devoted to the study of metric spaces, starting with more general spaces, having the limit as its primitive notion. The space is assumed to be metric separable, and this includes problems of cardinality and dimension. Dimension theory and the theory of Borei sets, Baire functions, and related topics are also discussed. The final chapter is about complete spaces and includes problems of general function theory which can be expressed in topological terms. The book includes two appendices, one on applications of topology to mathematical logics and another to functional analysis. This monograph will be helpful to students and practitioners of algebra and mathematics.




Set-Valued Analysis


Book Description

"An elegantly written, introductory overview of the field, with a near perfect choice of what to include and what not, enlivened in places by historical tidbits and made eminently readable throughout by crisp language. It has succeeded in doing the near-impossible—it has made a subject which is generally inhospitable to nonspecialists because of its ‘family jargon’ appear nonintimidating even to a beginning graduate student." —The Journal of the Indian Institute of Science "The book under review gives a comprehensive treatment of basically everything in mathematics that can be named multivalued/set-valued analysis. ...The book is highly recommended for mathematicians and graduate students who will find here a very comprehensive treatment of set-valued analysis." —Mathematical Reviews "This book provides a thorough introduction to multivalued or set-valued analysis... The style is lively and vigorous, the relevant historical comments and suggestive overviews increase the interest for this work...Graduate students and mathematicians of every persuasion will welcome this unparalleled guide to set-valued analysis." —Zentralblatt Math




Set-Valued Force Laws


Book Description

As one of the oldest natural sciences, mechanics occupies a certain pioneering role in determining the development of exact sciences through its interaction with mathematics. As a matter of fact, there is hardly an area in mathematics that hasn't found an application of some form in mechanics. It is thus almost inevitable that theoretical methods in mechanics are highly developed and laid out on different levels of abstraction. With the spread of digital processors this goes as far as the implementation in commercial computer codes, where the user is merely con fronted on the surface with the processes that run in the background, i. e. mechan ics as such: in teaching and research, as well as in the context of industry, me chanics is much more, and must remain much more than the mere production of data with the help of a processor. Mechanics, as it is talked about here, tradition ally includes a wide spectrum, ranging from applied mechanics, analytical and technical mechanics to modeling. and experimental mechanics, as well as technical realization. It also includes the subdisciplines of rigid body mechanics, continuum mechanics, or fluid mechanics, to mention only a few. One of the fundamental and most important concepts used by nearly all natural sciences is the concept of linearization, which assumes the differentiability of mappings. As a matter of fact, all of classical mechanics is based on the avail ability of this quality.




Introduction to Functions of a Complex Variable


Book Description

This book includes information on elementary general topology, the Cauchy Integral Theorem and concepts of homology and homotopy in their application to the Cauchy theory. It is intended for an introductory course in complex analysis at the first-year graduate and advanced undergraduate level.