An Introduction to Multicomplex SPates and Functions


Book Description

A rather pretty little book, written in the form of a text but more likely to be read simply for pleasure, in which the author (Professor Emeritus of Mathematics at the U. of Kansas) explores the analog of the theory of functions of a complex variable which comes into being when the complexes are re




Introductory Theory of Topological Vector SPates


Book Description

This text offers an overview of the basic theories and techniques of functional analysis and its applications. It contains topics such as the fixed point theory starting from Ky Fan's KKM covering and quasi-Schwartz operators. It also includes over 200 exercises to reinforce important concepts.;The author explores three fundamental results on Banach spaces, together with Grothendieck's structure theorem for compact sets in Banach spaces (including new proofs for some standard theorems) and Helley's selection theorem. Vector topologies and vector bornologies are examined in parallel, and their internal and external relationships are studied. This volume also presents recent developments on compact and weakly compact operators and operator ideals; and discusses some applications to the important class of Schwartz spaces.;This text is designed for a two-term course on functional analysis for upper-level undergraduate and graduate students in mathematics, mathematical physics, economics and engineering. It may also be used as a self-study guide by researchers in these disciplines.







An Introduction to Multicomplex Spaces and Functions


Book Description

A rather pretty little book, written in the form of a text but more likely to be read simply for pleasure, in which the author (Professor Emeritus of Mathematics at the U. of Kansas) explores the analog of the theory of functions of a complex variable which comes into being when the complexes are re




LINEAR ALGEBRA


Book Description

This clear, concise and highly readable text is designed for a first course in linear algebra and is intended for undergraduate courses in mathematics. It focusses throughout on geometric explanations to make the student perceive that linear algebra is nothing but analytic geometry of n dimensions. From the very start, linear algebra is presented as an extension of the theory of simultaneous linear equations and their geometric interpretation is shown to be a recurring theme of the subject. The integration of abstract algebraic concepts with the underlying geometric notions is one of the most distinguishing features of this book — designed to help students in the pursuit of multivariable calculus and differential geometry in subsequent courses.Explanations and concepts are logically presented in a conversational tone and well-constructed writing style so that students at a variety of levels can understand the material and acquire a solid foundation in the basic skills of linear algebra.




A Course in Linear Algebra


Book Description

"Suitable for advanced undergraduates and graduate students, this text introduces basic concepts of linear algebra. Each chapter contains an introduction, definitions, and propositions, in addition to multiple examples, lemmas, theorems, corollaries, andproofs. Each chapter features numerous supplemental exercises, and solutions to selected problems appear at the end. 1988 edition"--




Applied Functional Analysis


Book Description

Applied Functional Analysis, Third Edition provides a solid mathematical foundation for the subject. It motivates students to study functional analysis by providing many contemporary applications and examples drawn from mechanics and science. This well-received textbook starts with a thorough introduction to modern mathematics before continuing with detailed coverage of linear algebra, Lebesque measure and integration theory, plus topology with metric spaces. The final two chapters provides readers with an in-depth look at the theory of Banach and Hilbert spaces before concluding with a brief introduction to Spectral Theory. The Third Edition is more accessible and promotes interest and motivation among students to prepare them for studying the mathematical aspects of numerical analysis and the mathematical theory of finite elements.




Applied Algebra and Functional Analysis


Book Description

"A valuable reference." — American Scientist. Excellent graduate-level treatment of set theory, algebra and analysis for applications in engineering and science. Fundamentals, algebraic structures, vector spaces and linear transformations, metric spaces, normed spaces and inner product spaces, linear operators, more. A generous number of exercises have been integrated into the text. 1981 edition.




Topological Vector Spaces


Book Description

With many new concrete examples and historical notes, Topological Vector Spaces, Second Edition provides one of the most thorough and up-to-date treatments of the Hahn-Banach theorem. This edition explores the theorem's connection with the axiom of choice, discusses the uniqueness of Hahn-Banach extensions, and includes an entirely new chapter on v




Topology


Book Description

"Admirably meets the topology requirements for the pregraduate training of research mathematicians." — American Mathematical Monthly Topology, sometimes described as "rubber-sheet geometry," is crucial to modern mathematics and to many other disciplines — from quantum mechanics to sociology. This stimulating introduction to the field will give the student a familiarity with elementary point set topology, including an easy acquaintance with the line and the plane, knowledge often useful in graduate mathematics programs. The book is not a collection of topics, rather it early employs the language of point set topology to define and discuss topological groups. These geometric objects in turn motivate a further discussion of set-theoretic topology and of its applications in function spaces. An introduction to homotopy and the fundamental group then brings the student's new theoretical knowledge to bear on very concrete problems: the calculation of the fundamental group of the circle and a proof of the fundamental theorem of algebra. Finally, the abstract development is brought to satisfying fruition with the classification of topological groups by equivalence under local isomorphism. Throughout the book there is a sustained geometric development — a single thread of reasoning which unifies the topological course. One of the special features of this work is its well-chosen exercises, along with a selection of problems in each chapter that contain interesting applications and further theory. Careful study of the text and diligent performance of the exercises will enable the student to achieve an excellent working knowledge of topology and a useful understanding of its applications. Moreover, the author's unique teaching approach lends an extra dimension of effectiveness to the books: "Of particular interest is the remarkable pedagogy evident in this work. The author converses with the reader on a personal basis. He speaks with him, questions him, challenges him, and — best of all — occasionally leaves him to his own devices." — American Scientist




Recent Books